Determinant of block matrix with equal diagonals

block matricesdeterminantlinear algebramatrices

Let $$Q=\begin{bmatrix}A&B\\-B&A\end{bmatrix}$$ where $A,B\in \mathbb{R}^{n\times n}$. Prove that $$\det(Q)=\det(A^2+B^2)$$

Since $A$ and $B$ do not commute, I cannot use Schur's formula. Also, $A$ and $B$ may not be invertible. Any comment or response is appreciated.

Best Answer

You need to require that the matrices $A$ and $B$ commute (i.e., that $AB=BA$). Otherwise, for example, $A=\begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}$ and $B=\begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix}$ yield a counterexample (since $\det\begin{pmatrix} A & B\\ -B & A \end{pmatrix}=\det\begin{pmatrix} 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1\\ -1 & 0 & 1 & 1\\ -1 & -1 & 0 & 1 \end{pmatrix}=1\neq0=\det\left( A^2 +B^2 \right) $ in this case).

But if $A$ and $B$ do commute, then your claim holds:

Theorem 1. Let $n\in\mathbb{N}$. Let $A$ and $B$ be two $n\times n$-matrices over a commutative ring $\mathbb{K}$ such that $AB=BA$. Then, the block matrix $\begin{pmatrix} A & B\\ -B & A \end{pmatrix}$ satisfies \begin{align} \det\begin{pmatrix} A & B\\ -B & A \end{pmatrix}=\det\left( A^2 +B^2 \right) . \end{align}

First proof of Theorem 1 (sketched). One fact about block matrices is the following: If $A$, $B$, $C$ and $D$ are four $n\times n$-matrices over $\mathbb{K}$ such that $AB=BA$, then \begin{align} \det\begin{pmatrix} A & B\\ C & D \end{pmatrix}=\det\left( DA-CB\right) . \label{darij1.pf.t1.1st.1} \tag{1} \end{align} (This is mentioned in https://math.stackexchange.com/a/548487/ , and can be proven using the Schur complement in the case when $A$ is invertible. When $A$ is not invertible, replace $A$ by $A+xI_{n}$, where $x$ is a polynomial indeterminate. This argument is probably all over math.stackexchange. For a specific reference, see (16) in John R. Silvester, Determinants of Block Matrices, The Mathematical Gazette, Vol. 84, No. 501 (Nov., 2000), pp. 460--467.)

Applying \eqref{darij1.pf.t1.1st.1} to $C=-B$ and $D=A$, we find \begin{align} \det\begin{pmatrix} A & B\\ -B & A \end{pmatrix}=\det\underbrace{\left( AA-\left( -B\right) B\right) } _{=A^2 +B^2 }=\det\left( A^2 +B^2 \right) . \end{align} This proves Theorem 1. $\blacksquare$

A second proof of Theorem 1 will result from proving a somewhat more general result, which however relies on the existence of an "imaginary unit" in our ring $\mathbb{K}$ (that is, an element $i$ such that $i^2 = -1$):

Theorem 2. Let $n\in\mathbb{N}$. Let $A$ and $B$ be two $n\times n$-matrices over a commutative ring $\mathbb{K}$. Let $i \in \mathbb{K}$ be such that $i^2 = -1$. Then, the block matrix $\begin{pmatrix} A & B\\ -B & A \end{pmatrix}$ satisfies \begin{align} \det\begin{pmatrix} A & B\\ -B & A \end{pmatrix}=\det\left( A-iB\right) \det \left( A+iB\right). \end{align}

Proof of Theorem 2. It is straightforward to see that the block matrix $\begin{pmatrix} I_{n} & iI_{n}\\ 0_{n\times n} & I_{n} \end{pmatrix}$ (where $0_{n\times n}$ denotes the $n\times n$ zero matrix) is invertible (with inverse $\begin{pmatrix} I_{n} & -iI_{n}\\ 0_{n\times n} & I_{n} \end{pmatrix} $) and satisfies \begin{align} \begin{pmatrix} I_{n} & iI_{n}\\ 0_{n\times n} & I_{n} \end{pmatrix} \begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \begin{pmatrix} A-iB & 0\\ -B & A+iB \end{pmatrix} \begin{pmatrix} I_{n} & iI_{n}\\ 0_{n\times n} & I_{n} \end{pmatrix} . \end{align} Hence, \begin{equation} \begin{pmatrix} A & B\\ -B & A \end{pmatrix} = \begin{pmatrix} I_{n} & iI_{n}\\ 0_{n\times n} & I_{n} \end{pmatrix} ^{-1} \begin{pmatrix} A-iB & 0\\ -B & A+iB \end{pmatrix} \begin{pmatrix} I_{n} & iI_{n}\\ 0_{n\times n} & I_{n} \end{pmatrix} . \end{equation} Thus, the matrices $\begin{pmatrix} A & B\\ -B & A \end{pmatrix}$ and $\begin{pmatrix} A-iB & 0\\ -B & A+iB \end{pmatrix}$ are similar, and therefore have the same determinant. Hence, \begin{align*} \det\begin{pmatrix} A & B\\ -B & A \end{pmatrix} & =\det\begin{pmatrix} A-iB & 0\\ -B & A+iB \end{pmatrix}\\ & =\det\left( A-iB\right) \cdot\det\left( A+iB\right) \end{align*} (because the determinant of any block-triangular matrix whose diagonal blocks are square matrices always equals the product of the determinants of these diagonal blocks). This proves Theorem 2. $\blacksquare$

Second proof of Theorem 1 (sketched). We can find a commutative ring $\mathbb{L}$ such that $\mathbb{K}$ is a subring of $\mathbb{L}$ and such that there exists some $i\in\mathbb{L}$ satisfying $i^2 =-1$. (For example, if $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, then we can take $\mathbb{L}=\mathbb{C}$. In the general case, we can let $\mathbb{L}$ be the quotient ring $\mathbb{K}\left[ x\right] /\left( x^2 +1\right) $, which is a free $\mathbb{K}$-module with basis $\left( \overline{1},\overline{x}\right) $ because $x^2 +1$ is a monic polynomial; then, $i$ should be taken to be the residue class $\overline{x}$ of the indeterminate $x$.)

Anyway, having picked our ring $\mathbb{L}$ and element $i$, let us now regard our matrices as matrices over $\mathbb{L}$. Now, Theorem 2 (applied to $\mathbb{L}$ instead of $\mathbb{K}$) yields \begin{align*} \det\begin{pmatrix} A & B\\ -B & A \end{pmatrix} & =\det\left( A-iB\right) \cdot\det\left( A+iB\right) \\ & =\det\left( \underbrace{\left( A-iB\right) \left( A+iB\right) }_{=AA+iAB-iBA-i^2 BB}\right) \\ & =\det\left( \underbrace{AA}_{=A^2 }+i\underbrace{AB}_{=BA} -iBA-\underbrace{i^2 }_{=-1}\underbrace{BB}_{=B^2 }\right) \\ & =\det\underbrace{\left( A^2 +iBA-iBA-\left( -1\right) B^2 \right) }_{=A^2 +B^2 }=\det\left( A^2 +B^2 \right) . \end{align*} This proves Theorem 1. $\blacksquare$

Related Question