Derive the density of Gaussian Copula

copulanormal distributionprobability distributions

I have a question regarding Gaussian copulas:

The multivariate Gaussian copula is defined as,
$$
C(u_1,\dots,u_n;\Sigma) = \Phi_{\Sigma}(\Phi^{-1}(u_1),\dots,\Phi^{-1}(u_n)),
$$

where $\Phi_{\Sigma}$ is a multivariate $n$-dimensional normal distribution with correlation matrix $\Sigma$ and $\Phi$ is the standard univariate cumulative distribution function. How can we show that the corresponding density
is:
\begin{align}
c(u_1,\dots,u_n;\Sigma) &= \frac{1}{\sqrt{\mbox{det} \Sigma}}\exp
\begin{pmatrix} – \displaystyle{\frac{1}{2}}
\begin{bmatrix}
\Phi^{-1}(u_1) \\
\vdots \\
\Phi^{-1}(u_n)
\end{bmatrix}^{T} [\Sigma^{-1} – I ]
\begin{bmatrix}
\Phi^{-1}(u_1) \\
\vdots \\
\Phi^{-1}(u_n)
\end{bmatrix}
\end{pmatrix},
\end{align}

where $I$ is the identity matrix?

Best Answer

Let $x=[\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_n)]^{\top}$. Then \begin{align} c(u_1,\ldots,u_n;\Sigma)&=\frac{\partial^nC(u_1,.\ldots,u_n;\Sigma)}{\partial u_1\cdots\partial u_n}=\frac{\Phi(x;0,\Sigma)}{\prod_{i=1}^n \phi(x_i)} \\ &=(2\pi)^{-\frac{n}{2}}|\Sigma|^{-\frac{1}{2}}\exp\!\left(-\frac{1}{2}x^{\top}\Sigma^{-1}x\right)\times\prod_{i=1}^n (2\pi)^{-\frac{1}{2}}\exp\!\left(\frac{1}{2}x_i^2\right) \\ &=|\Sigma|^{-\frac{1}{2}}\exp\!\left(-\frac{1}{2}x^{\top}\Sigma^{-1}x+\frac{1}{2}x^{\top}x\right) \\ &=|\Sigma|^{-\frac{1}{2}}\exp\!\left(-\frac{1}{2}x^{\top}(\Sigma^{-1}-I)x\right). \end{align}