Define $S(v+null T) = Tv $ where $S:V/(nullT) \rightarrow W$ and $T: V \rightarrow W$. Show $S$ is injective.

linear algebraquotient-spaces

Define $S(v+ \mathrm{null}T) = Tv$ where $S:V/(\mathrm{null}T) \rightarrow W$ and $T: V \rightarrow W$ and $v\in V$.
Show $S$ is injective.

This comes up with on Page 98 of Sheldon Axler's Linear Algebra Done Right 3rd edition as an example.

I'm having a hard time with the last step.

The proof says: Suppose $v \in V$ and $S(v + \mathrm{null}T)=0$. Then
$Tv=0$. Thus $v \in \mathrm{null}T$. Hence 3.85 implies that
$v+\mathrm{null}T = 0 + \mathrm{null}T$. This implies that null$S$ =0,
and hence $S$ is injective.

Specifically, I can't see why $v+\mathrm{null}T = 0 + \mathrm{null}T$ implies null$S$ =0

For reference, 3.85 states:

Suppose $U$ is a subspace of $V$ and $v,w \in V$. Then the following
are equivalent: a) $v-w \in U$ ; b) $v+U=w+U$ ; c) $(v+U)\cap(w+U) \neq \emptyset $

Best Answer

He started with an arbitrary vector $v + \operatorname{null} T\in \operatorname{null} S$ and showed that the vector must be the zero vector of $V/\operatorname{null} T$, i.e., $0 + \operatorname{null} T$. Thus, the only possible element of $\operatorname{null} S$ is $0 + \operatorname{null} T$. Since $0 + \operatorname{null} T$ is already in $\operatorname{null} S$, you deduce that $\operatorname{null} S = \{0 + \operatorname{null} T\}$ (here he simply writes $\operatorname{null} S = 0$).