Cross product of a position vector and a vector field

vector analysis

The problem is to simplify the following expression: $$\nabla\times[\frac{(\vec{B}\cdot\vec{r})}{r^3}\vec{r}]$$ where $\vec{B}$ is a constant vector and $\vec{r}$ is a position vector.

So $(\vec{B}\cdot\vec{r})$ is scalar product and $\frac{(\vec{B}\cdot\vec{r})}{r^3}$ is a scalar field. Which means the identity $$\nabla \times (\Phi\vec{r}) = \Phi(\nabla\times\vec{r}) – \vec{r}\times(\nabla\Phi)$$ can be applied. And $\Phi = \frac{(\vec{B}\cdot\vec{r})}{r^3}\vec{r}$.

Then $(\nabla\times\vec{r})=0 $ and $\nabla\Phi$ is a vector field $\vec{A}$.

So the expression is left with $-\vec{r}\times\vec{A}$.

The question is: how do I find the cross product between a position vector and a vector field?

Best Answer

If $\vec B$ is a constant vector, then we have

$$\begin{align} \nabla \left(\frac{\vec B\cdot \vec r}{r^3}\right)&=\nabla \left(\frac{ B_r}{r^2}\right)\\\\ &=B_r\nabla\left(\frac1{r^2}\right)+\frac1{r^2}\underbrace{\nabla (B_r)}_{=0}\\\\ &=B_r \left(-\frac{2\vec r}{r^4}\right) \end{align}$$

Hence, we have

$$\vec r\times \nabla \left(\frac{\vec B\cdot \vec r}{r^3}\right)=0$$

Related Question