Convolution of complementary Error functi0ns

calculusintegrationinverse laplace

I'm interested in the solution to the following integral, given that $a$ is a positive real:
$$I=\int_0^1 \text{erfc}\!\left(\frac{a}{\sqrt{t}}\right) \text{erfc}\!\left(\frac{a}{\sqrt{1-t}}\right) dt=(2 b+1) \text{erfc}\left(\sqrt{b}\right)-\frac{2 \sqrt{b} e^{-b}}{\sqrt{\pi }}$$
where $a=\sqrt{\frac{b}{4}}$. The result (that Mariusz pointed out in the comments and i reproduced using mathematica) does not suffice, I require the step by step solution or a reference.

Actually, it seems that this is the final step in a lengthy calculation of the integral in this question: Evaluation of $\int_0^T \int_0^t \tau^{-1/2} (T-\tau)^{-1/2} \exp(\frac{ix^2}{2(T-\tau)})d\tau dt$

Using the convolution theorem for laplace transformations, one gets:
$$I=\mathcal{L}^{-1}\left[s^{-2} e^{-2\sqrt{bs}}\right](1)$$
Sadly, i could not find a way to perform this inverse laplace transformation, so I tried to tackle the integral directly. Using $erfc=1-erf$ and dropping some easy to calculate terms, I needed to calculate:
$$J=\int_0^1 \text{erf}\!\left(\frac{a}{\sqrt{t}}\right) \text{erf}\!\left(\frac{a}{\sqrt{1-t}}\right) dt=\frac{4}{\pi}\int_0^1\int_0^{\frac{a}{\sqrt{t}}}\int_0^{\frac{a}{\sqrt{1-t}}}e^{-x^2-y^2}dxdydt$$

Or, written a bit differently:
$$J=\frac{4}{\pi}\int_0^1\int_{\eta(t)}e^{-v^2}d^2vdt$$
where $\eta(t)=[0,\frac{a}{\sqrt{t}}]\times[0,\frac{a}{\sqrt{1-t}}]$

The function to be integrated does, in this form, exhibit cylindrical symmetry, thus i tried switching into cylindrical coordinates:

$$J=\frac{4}{\pi}\int_0^{+\infty}\int_0^1l(r|\eta(t))dt \exp(-r^2)dr$$
where $l(r|\eta(t))$ is the arc length of the section of a circle of radius $r$ with $\eta(t)$.
Some geometric reasoning gives($A\leq B$):
$$l(r|[0,A]\times [0,B])=\begin{cases} \frac{\pi}{2}r & r\leq A\\
\frac{\pi}{2}r – r\arctan(\sqrt{\frac{r^2}{A^2}-1}) & A\leq r\leq B\\
\frac{\pi}{2}r – r\arctan(\sqrt{\frac{r^2}{A^2}-1}) -r\arctan(\sqrt{\frac{r^2}{B^2}-1}) & B\leq r\leq \sqrt{A^2+B^2}\\
0 & \sqrt{A^2+B^2}\leq r
\end{cases}$$

Also, it is noteworthy to see:
$$l(r|[0,A]\times [0,B])=Re(\frac{\pi}{2}r – r\arctan(\sqrt{\frac{r^2}{A^2}-1}) -r\arctan(\sqrt{\frac{r^2}{B^2}-1})) \Theta(\sqrt{A^2+B^2}-r)$$

The heaviside step function can be taken into account by adjusting the integration range in $t$ depending on $r$:
for $r\leq \sqrt{A^2+B^2}$, one integrates from 0 to 1.
for $\sqrt{A^2+B^2}\leq r$, one integrates over:
$$[0,1/2-\sqrt{1/4-a^2/r^2}]\cup [1/2+\sqrt{1/4-a^2/r^2},1] (*)$$

Luckily, $\arctan\sqrt{\frac{r^2t}{a^2}-1}$ (appearing in $l(r|\eta(t))$) does posses an easy antiderivative(which i will not write out here)! Also, the antiderivative's value at the intermediate points in (*) are purely imaginary, so that taking the real part cancels them.

So finally, if I'm not totally mistaken, we arrive at:

$$J=\frac{4}{\pi}Re\left[\int_0^{+\infty}e^{-r^2}\left(
\frac{\pi}{2}r\left(1-2\sqrt{1/4-a^2/r^2}\right)
-2a^2/r\left(r^2/a^2\arctan\left(\sqrt{\frac{r^2t}{a^2}-1}\right) -\sqrt{\frac{r^2t}{a^2}-1}\right)
\right)dr\right] $$

I think this transformation had no merit for this integral seem even scarier than the one i started with, but maybe someone has an idea how to work with that.

Best Answer

$$\mathcal{L}_s^{-1}\left[s^v \exp \left(-a \sqrt{s}\right)\right](x)=\frac{x^{-v-1} \exp \left(-\frac{a^2}{8 x}\right) D_{2 v+1}\left(\frac{a}{\sqrt{2 x}}\right)}{2^{v+\frac{1}{2}} \sqrt{\pi }}$$ for: $\Re\left(a^2\right)>0$ and $\Re\left(s\right)>0$ where: $D_{2 v+1}\left(\frac{a}{\sqrt{2} \sqrt{x}}\right)$ is Parabolic Cylinder Function

In yours case: $v=-2$, $a=2 \sqrt{b}$ and $x=1$

$$\color{red}{\mathcal{L}_s^{-1}\left[\frac{\exp \left(-2 \sqrt{b s}\right)}{s^2}\right](x)}=\\2 e^{-\frac{b}{2}} \sqrt{\frac{2}{\pi }} D_{-3}\left(\sqrt{2} \sqrt{b}\right)=\\\frac{8 e^{-b} H_{-3}\left(\sqrt{b}\right)}{\sqrt{\pi }}=\color{red}{\\-\frac{2 \sqrt{b} e^{-b}}{\sqrt{\pi }}+(1+2 b)\text{erfc}\left(\sqrt{b}\right)}$$

where: $H_{-3}\left(\sqrt{b}\right)$ is Hermite polynomial

Reference:

Integrals and series.Volume 5, Inverse Laplace transforms Example 10,page 52.