Convergence of $ \int^\infty \int^\infty \cdots \int^\infty \frac{dx_1 dx_2 \cdots dx_n}{(x_1^2+x_2^2+\cdots+x_n^2)^a}$, where $a > \frac{1}{2} n$.

improper-integralsintegrationreal-analysis

I want to show that $ \int^\infty \int^\infty \cdots \int^\infty \frac{dx_1 dx_2 \cdots dx_n}{(x_1^2+x_2^2+\cdots+x_n^2)^a}$ converges, where $a > \frac{1}{2} n$. This problem is from Cambridge Math Tripos 1904. I am not sure why there is no lower bound for this integral. Anyone knows what is the default value for the empty lower bound? I can see if $n = 3$, we can use the spherical triple integrals to solve the problem. But how do we show that the general case for nth repeated integrals?

Best Answer

Using the AG-GM :

If $x_1,x_2,\cdots,x_n$ are positive real numbers, then

$$n\sqrt[n]{x_1^2x_2^2\cdots x_n^2}\leq x_1^2+x_2^2+ \cdots x_n^2$$

You can write: $$ \int_1^\infty \cdots \int_1^\infty \frac{dx_1 \cdots dx_n}{(x_1^{2}+\cdots + x_n^{2})^a} \leq \frac{1}{n} \int_{1}^\infty \cdots \int_{1}^\infty \frac{dx_1 \cdots dx_n}{x_1^{2a/n}\cdots x_n^{2a/n}} $$ But: $$ \frac{1}{n} \int_{1}^\infty \cdots \int_{1}^\infty \frac{dx_1 \cdots dx_n}{x_1^{2a/n}\cdots x_n^{2a/n}} = \frac{1}{n} \int_{1}^\infty \frac{dx_1}{x_1^{2a/n}} \cdots \int_{1}^\infty \frac{dx_n}{x_n^{2a/n}} $$ And, since $\frac{2a}{n}> 1$,for each $i \in [1,\infty)$: $$ \int_{1}^\infty \frac{dx_i}{x_i^{2a/n}} = \left[ \frac{x_i^{1-2a/n}}{1-2a/n} \right]_1^\infty = \frac{1}{1-2a/n} $$