Convergence as surely Bernoulli r.v

probabilityprobability theory

Let $X_1,X_2, . . .$ be an i.i.d. sequence of Bernoulli random variables with parameter $p \in (0,1)$. Set $T=\sum_{i=1}^{\infty}\mathbb{1}[X_i=1]$. Prove that $P(T=\infty)=1$.

Set $S_n=\sum_{i=1}^{n}\mathbb{1}[X_i=1]$. Then $\mathbb E(S_n)=np$ where $p$ is the probability of success for Bernoulli r.v. Note $\sum_{n=1}^{\infty} P(S_n) = \infty$, $ P(T=\infty) = \infty$. Then By Borel Cantelli 2, $P({S_n \operatorname{ i.o.}}) = P(T=\infty) = 1$

Is this correct? Please suggest corrections in the process. Thanks!

Best Answer

Let $E_n := \{ X_n = 1 \}$ then $$\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \sum_{n=1}^{\infty}\mathbb{P}(X_n = 1) = \infty \implies \mathbb{P}(E_n \text{ i. o. }) = \mathbb{P}(T = \infty) = 1,$$ by second Borel-Cantelli lemma.

Related Question