Convergence and divergence of $\frac{a_n}{n}$ as $n\to\infty$

calculusreal-analysissequences-and-series

Suppose that a sequence $\{a_n\}_{n\geqslant 1}$ satisfies:

$$a_{m+n}\leqslant a_m+a_n$$

for all integers $m,n\geqslant 1$. Show that $\frac{a_n}{n}$ either converges or diverges to $-\infty$ as $n\to \infty$.

Resolution:
For an arbitrarily fixed positive integer $k$ we put $n=qk+r$ with $0\leqslant r<k$. Applying the given inequality for $q$ times we get $a_n=a_{qk+r}\leqslant qa_k+a_r$; so,

$\frac{a_n}{n}\leqslant\frac{a_k}{k}+\frac{a_r}{n}$
Taking the limit as $n\to\infty$, we get

$\lim \sup_{n\to\infty}\frac{a_n}{n}\leqslant\frac{a_k}{k}$.

The sequence $\frac{a_n}{n}$ is therefore bounded above. Since $k$ is arbitrary, we conclude that:

$\lim \sup_{n\to\infty}\frac{a_n}{n}\leqslant \inf_{k\geqslant 1}\frac{a_k}{k}\leqslant\lim \inf_{k\to\infty}\frac{a_k}{k}$,

which concludes the proof.

Question:

1) First the author says that $k$ is a fixed positive integer. However in the last expression $\lim \inf_{k\to\infty}\frac{a_k}{k}$ the author makes $k$ vary. How is this supposed to prove that $\frac{a_n}{n}$ converges since the behaviour of $\lim \inf_{k\to\infty}\frac{a_k}{k}$ is not known? Why is $k$ allowed to vary?

2)On the question it is mentioned the divergence to $-\infty$. How was that point addressed in the answer or resolution?

Thanks in advance!

Best Answer

The author first considers a fixed positive $k$ and proves $\lim \sup_{n\to\infty}\frac{a_n}{n}\leqslant\frac{a_k}{k}$. Consequently, $\sup_n \frac{a_n}n < \infty$, hence $\left(\frac{a_n}{n}\right)_n$ is bounded above.

Since $\lim \sup_{n\to\infty}\frac{a_n}{n}\leqslant\frac{a_k}{k}$ is valid for every $k$, by definition of the infinimum, $\lim \sup_{n\to\infty}\frac{a_n}{n}\leqslant\inf_k\frac{a_k}{k}$. By definition of $\liminf$, one also has $\inf_k\frac{a_k}{k}\leq \liminf_k \frac{a_k}{k}$.

Thus $\liminf_k \frac{a_k}{k} = \limsup_k \frac{a_k}{k} = \inf_k \frac{a_k}{k}$, thus $\frac{a_n}{n}$ converges to a limit in $\mathbb R\cup \{-\infty, \infty\}$.
Since $\frac{a_n}{n}$ is bounded above, $\inf_k \frac{a_k}{k}<\infty$, but it could very well be equal to $-\infty$. Thus the limit belongs to $\mathbb R\cup \{-\infty\}$