Convergence Absolute Value Operators

functional-analysishilbert-spacesoperator-theory

Let $A_n$ a norm convergent sequence of bounded operators in a Hilbert space with limit $A$. Let $|B|$ denote the absolute value of $B$ i.e. $\sqrt{B^* B}$. How to prove that $|A_n|$ norm converges to $|A|$?

Best Answer

If $A_n\to A$, then certainly $A^*_nA_n\to A^*A$, and $p(A^*_nA_n)\to p(A^*A)$ for any polynomial $p$. If now $\sigma(A^*A)\subset[0,b)$, there is some $N_1\in\mathbb N$ such that $\sigma(A^*_nA_n)\subset[0,b)$ for all $n\geq N_1$ (for a proof, see Rudin's Functional Analysis, 2nd edition, Theorem 10.20). Fix $\varepsilon>0$, and choose a polynomial $p$ such that $$\sup_{x\in[0,b]}|x^{1/2}-p(x)|<\varepsilon.$$ There exists $N_2\geq N_1$ such that $$\|p(A^*_nA_n)-p(A^*A)\|<\varepsilon$$ for $n\geq N_2$. Then for $n\geq N_2$, we have $$\||A_n|-|A|\|<3\varepsilon.$$

Related Question