Continuous function with compact support implies that $\int |f(x)|dx<\infty$

lebesgue-integralreal-analysis

Let $f$ be a continuous function on $\mathbb R^n$ and let $\mathrm {supp} f$ be compact. Then, prove that $\displaystyle\int |f(x)|dx<\infty$.

Is this idea correct?

Proof

Since $f$ is continuous and $\mathrm{supp}f$ is compact, there exists $C>0$ s.t. $|f(x)|\leqq C$ on supp$f$.

And since $\mathrm{supp}f$ is compact, $\mu (\mathrm{supp}f)<\infty$.

Then,

\begin{align}
\displaystyle\int |f(x)|dx
&=\int_{\mathrm{supp}f} |f(x)| dx+\int_{(\mathrm{supp}f)^c} |f(x)| dx \\
&=\int_{\mathrm{supp}f} |f(x)| dx+\int_{(\mathrm{supp}f)^c} 0 \ dx\\
&=\int_{\mathrm{supp}f} |f(x)| dx\\
&\leqq \int_{\mathrm{supp}f} C dx\\
&=C \cdot \mu(\mathrm{supp} f)\\
&<\infty
\end{align}

Is this O.K. ?

Best Answer

Yes, its correct. However consider to clarify why $\mu(K)<\infty $, where $K:=\operatorname{supp}(f)$, with some reasoning like this: as $K\subset \mathbb{R}^n$ is compact then it is bounded, therefore there exists some $M>0$ such that $\|x\|_2<M$ for any chosen $x\in K$, then with $\lambda $ the Lebesgue measure we can see that $K\subset [-M,M]^n$, so $\lambda (K)\leqslant \lambda([-M,M]^n)=(2M)^n<\infty $.∎