Contest Math Question: simplifying logarithm expression further

algebra-precalculuscontest-mathlogarithms

I am working on AoPS Vol. 2 exercises in Chapter 1 and attempting to solve the below problem:

Given that $\log_{4n} 40\sqrt{3} = \log_{3n} 45$, find $n^3$ (MA$\Theta$ 1991).

My approach is to isolate $n$ and then cube it. Observe:
\begin{align*}
\frac{\log 40\sqrt{3}}{\log 4n} = \frac{\log 45}{\log 3n} \\
\log 40\sqrt{3}\log 3n = \log 45\log 4n\\
\log 40\sqrt{3} \cdot (\log 3 + \log n) = \log 45 \cdot (\log 4 + \log n)\\
\log n \cdot (\log 40\sqrt{3} – \log 45) = \log 45\log 4 – \log 40\sqrt{3}\log 3
\end{align*}

Dividing through and putting the coefficients as powers, we have:
\begin{align*}
\log n &= \frac{\log 45^{\log 4} – \log \left[(40\sqrt{3})^{\log 3}\right]}{\log\left(\frac{40\sqrt{3}}{45}\right)}
=\frac{\log \left(\frac{45^{\log 4}}{(40\sqrt{3})^{\log 3}}\right) }{\log\left(\frac{40\sqrt{3}}{45}\right)} \\
&=\log \left(\frac{45^{\log 4}}{(40\sqrt{3})^{\log 3}}\right)^{\log\left(\frac{40\sqrt{3}}{45}\right)^{-1}}
\end{align*}

which shows that

\begin{align*}
n^3 = \left(\frac{45^{\log 4}}{(40\sqrt{3})^{\log 3}}\right)^{3\cdot\log\left(\frac{40\sqrt{3}}{45}\right)^{-1}}
\end{align*}

Somehow it feels like this answer may be simplified further. Are the steps shown so far correct and can the answer be expressed in a better way?

Best Answer

I would go the following way.

You have :

$$\begin{align}&\log_{4n} 40\sqrt{3} = \log_{3n} 45\\ \implies &\log_{4n} \left(3\cdot 40^2\right) = \log_{3n} 45^2=k \end{align}$$

This leads to :

$$\begin{align}&\begin{cases}(4n)^k=3\cdot 40^2\\ (3n)^k=45^2 \end{cases}\\ \implies &\left(\frac 43\right)^k=\frac {3\cdot 40^2}{45^2}=\left(\frac {4}{3}\right)^3\\ \implies &k=3\\ \implies &n^3=\frac {45^2}{3^3}=75\thinspace.\end{align}$$

Related Question