Confusion with vector spaces

coordinate systemseuclidean-geometrylinear algebravector-spacesvectors

If we consider $\mathbb{R}^2$ space with cartesian coordinates, then $\vec{V_{c1}}+\vec{V_{c2}} = \overrightarrow{V_{c1}+V_{c2}}$ implies we add components of the vectors. This idea of adding vectors should be invariant to the basis used but if we consider adding vectors using polar coordinates the way we add components is completely different compared to using cartesian coordinates.

Therefore, does this mean when we define a vector space it's basis specific and we must specify how actual addition/scaling operations are implemented under the basis OR are the implementations of the operations overlooked and by specifying that these operations exist we merely mean that we can put the "tail" of one vector on the "head" of another.

Best Answer

The vector space axioms tell how addition and scalar multiplication in a vector space must behave. The Euclidean plane with addition and scalar multiplication defined using the usual coordinate system satisfies those axioms. With those definitions the arithmetic agrees with your intuition about how vectors should behave geometrically.

Those axioms were chosen to capture the idea of "linearity".

There is no reason to expect that arbitrary other coordinate systems will allow you to calculate vector sums one coordinate at a time. In fact, the ones that do are precisely those defined by applying an invertible linear transformation. In vector space terms that's choosing a different basis.