Condition number for the relative residual of the matrix square root

condition numbermatrix equations

Let $X$ be a square root of $A \in \mathbb{C}^{n \times n}$, i.e., such that $X^2 = A$, and let
$$
\alpha(X) = \frac{\|X\|^2}{\|A\|} = \frac{\|X\|^2}{\|X^2\|} \ge 1.
$$

On page 135 of Functions of Matrices: Theory and Computation (Higham, 2008) it is claimed that it is easy to show that
$$
\frac{\kappa(X)}{\kappa(A)} \le \alpha(X) \le \kappa(X),
$$

where $\kappa(A) = \|A\| \|A^{-1}\|$ is the condition number of $A$. I'm trying to prove this fact but am having troubles.

I think there must be some useful property I cannot see that links the norms of $A$ and $X$ and their inverses. Does anybody have a hint to give me to get me started?

Best Answer

You have that $X=AX^{-1}$ and so $|| X|| \le || A ||||X^{-1}||$ that is equivalent to second inequality. The first inequality has the same proof by using $X^{-1}=(AX^{-1})^{-1}$