Conclusions from Fourier series equality

analysisfourier seriesreal-analysis

Assume a periodic, continuous function $f$ admits two Fourier series expansions
$$f(x)= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n\cos(nx) + b_n\sin(nx)$$
and
$$f(x)= \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n\cos(nx) + d_n\sin(nx)$$
with uniform convergence. But then one can write
$$0=\frac{a_0-c_0}{2} + \sum_{n=1}^{\infty} (a_n-c_n)\cos(nx) + (b_n-d_n)\sin(nx)$$
still with uniform convergence. What is the easiest way from here to deduce that $a_n-c_n=0$ for all $n$?

Best Answer

Suppose $$ f(x)= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n\cos(nx) + b_n\sin(nx) $$ uniformly on $[0,2\pi]$. Then, $$ \int_0^{2\pi}f(x)\cos x\,dx =\int_{0}^{2\pi} \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n\cos(nx) + b_n\sin(nx)\right)\cos x\,dx. $$ But "uniform" convergence allows you the switch the integral and summation signs, which implies that $$ \int_0^{2\pi}f(x)\cos x\,dx=a_1\int_{0}^{2\pi}\cos^2x\,dx=a_1\pi. $$ With the exactly same argument, $$ \int_0^{2\pi}f(x)\cos x\,dx=c_1\int_{0}^{2\pi}\cos^2x\,dx=c_1\pi. $$ This tells you that $a_1=c_1$.

Similarly, you can show that $a_n=c_n$, by multiplying $f$ with $\cos(nx)$, and $b_n=d_n$, by multiplying $f$ with $\sin(nx)$.