Concatenation of truncated Brownian motion and increment from the stopped Brownian motion is again a Brownian motion

brownian motionprobability theorystochastic-processes

Consider the concatenation mapping $\Phi: C_{(0)}\times [0, \infty) \times C_{(0)}$, where $C_{(0)}:=\{f \in C[0, \infty): f(0) = 0 \}$,
$$
\Phi(f, t, g) := \begin{cases}
f(s) &\text{ if } 0 \le s < t, \\
f(t) + g(s-t) &\text{ if } t \le s < \infty
\end{cases}
$$

($\Phi$ "glues" $f$ and $g$ together at the point $t$). Take as facts the strong Markov property and that $\Phi$ is continuous and hence measurable.

I would like to show that given a Brownian motion $B$, the concatenation of the truncated Brownian motion $B(t \wedge \tau)$ and the increment $B(\cdot + \tau) – B(\tau)$ is a Brownian motion, that is, that
$$
\Phi(B(\cdot \wedge \tau), \tau, B(\cdot + \tau) – B(\tau))
$$

is a Brownian motion.

My idea is to verify the axioms (for Brownian motion) directly.

The strong Markov property means that the probability of a measurable rectangle of the form
$$
\left \{ ( B( \cdot \wedge \tau ), \tau ) \in A \right\} \times \left \{ B (\cdot + \tau) – B (\tau) \right \}
$$

equals the product of the probabilities of the two rectangles.

I would need help with the axioms for independent increments and that the increments are normally distributed with zero mean and variance equal to the length of the increment. That is, 1) that given $0 \le t_0 < t_1 < t_2 < t_3$,
$$
\Phi(B(\cdot \wedge \tau), \tau, B(\cdot + \tau) – B(\tau))(t_3) -\Phi(B(\cdot \wedge \tau), \tau, B(\cdot + \tau) – B(\tau))(t_2)
$$

and
$$
\Phi(B(\cdot \wedge \tau), \tau, B(\cdot + \tau) – B(\tau))(t_1) -\Phi(B(\cdot \wedge \tau), \tau, B(\cdot + \tau) – B(\tau))(t_0)
$$

are independent and 2) that given any $0 \le s<t$,
$$
\Phi(B(\cdot \wedge \tau), \tau, B(\cdot + \tau) – B(\tau)) -\Phi(B(\cdot \wedge \tau), \tau, B(\cdot + \tau) – B(\tau))(s)
$$

is distributed according to $N(0, t-s)$.

Best Answer

Here is my own solution. Reading The answer from TheBridge, and not being able to completely follow the line of reasoning, I made a new attempt and - barring I'm in error - was able to solve it myself. (I think this just is the same argument TheBridge is making.)

In particular it does not seem that we need the Strong Markov Property.

First let us determine the distribution of $W_t := \Phi(B(t \wedge \tau), \tau, B(\cdot + \tau) - B(\tau))$: Given any $s >0$, consider the partition of $\Omega$ by the sets $$ A_1=\{\tau \le s \} $$ and $$ A_2 = \{ s < \tau \}. $$ For some arbitrary set $B \in \mathcal B (\mathbb R)$, Let us consider $$ \left\{ W_s \in B \right\} = \bigcup_{i=1}^2 \left \{ W_s \in B \cap A_i \right \}. $$ For $\omega \in A_1$ we have that $\tau (\omega) \le s$ and hence from the definition of $\mathrm \Phi$, \begin{align*} W_s(\omega) &= \underbrace{B (\tau(\omega)\wedge\tau(\omega), \omega )}_{f(\tau(\omega))} + \underbrace{B((s - \tau(\omega)) + \tau(\omega), \omega) - B(\tau(\omega), \omega)}_{g(s - \tau(\omega))} \\ &= B(s, \omega). \end{align*} Thus $$ \left \{ W_s \in B \cap A_1 \right \} = \left \{ B_s \in B \cap A_1 \right \}. $$ For $\omega \in A_2$ we have that $s < \tau(\omega)$ and hence from the definition of $\mathrm \Phi$, \begin{align*} W_s(\omega) &= B (s \wedge \tau(\omega), \omega ) \\ &= B (s , \omega ). \end{align*} Thus $$ \left \{ W_s \in B \cap A_2 \right \} = \left \{ B_s \in B \cap A_2 \right \}, $$ and we conclude \begin{align*} \left\{ W_s \in B \right\} &= \bigcup_{i=1}^2 \left \{ W_s \in B \cap A_i \right \} \\ &= \bigcup_{i=1}^2 \left \{ B_s \in B \cap A_i \right \} \\ &= \left \{ B_s \in B \right \}, \end{align*} and hence $$ \mathrm P \left\{ W_s \in B \right\} = \mathrm P \left \{ B_s \in B \right \} $$ Now, consider $s_1 < s_3$ and the increment $W_{s_2} - W_{s_1}$. By partitioning $\Omega $ into $$ \{ s_2 < \tau \} \bigcup \{ s_1 < \tau \le s_2 \} \bigcup \{ \tau \le s_1 \}, $$ it follows from an analogous argument that $$ W_{s_2} - W_{s_1} \sim B_{s_2} - B_{s_1}. $$

Further, the same kind of argument, and using that $B$ has independent increment, also works to show that for any $0 \le s_1 < s_2 < s_3 < s_4$, and any $A, B \in \mathcal{B}(\mathbb R)$ \begin{align*} \mathrm P \left \{ W_{s_2} - W_{s_1} \in A, W_{s_4} - W_{s_3} \in B \right \} &= \mathrm P \left \{ B_{s_2} - B_{s_1} \in A, B_{s_4} - B_{s_3} \in B \right \} \\ &= \mathrm P \left \{ B_{s_2} - B_{s_1} \in A\right\} \mathrm P\left \{ B_{s_4} - B_{s_3} \in B \right \} \\ &= \mathrm P \left \{ W_{s_2} - W_{s_1} \in A\right\} \mathrm P\left \{ W_{s_4} - W_{s_3} \in B \right \}. \end{align*} Hence $W$ has independent increments.

Related Question