Computing the exact value of the integral $∫_0^∞ \tanh(2x)\ln(\tanh x)dx.$

calculusdefinite integralshyperbolic-functionsimproper-integralsintegration

LATEST EDIT
Thanks to @FDP’s alternative method and @Claude Leibovici’s generalisation on the integral. Meanwhile, I had found a formula for the integral with power n in general.
$$\boxed{I_n=∫_0^∞ \tanh(2x)\ln^n(\tanh x)dx =\frac{(-1)^n n !}{2^n}\left(1-\frac{1}{2^{n+1}}\right)\zeta(n+1)} $$
and its proof is shown below.


Recently, I investigate the integral

$$∫_0^∞ \tanh(2x)\ln (\tanh x)dx,$$
using the substitution $y=\tanh x$.

$$
\begin{aligned}
I &=\int_0^{\infty} \frac{2 \tanh x}{1+\tanh ^2 x} \ln (\tanh x) d x \\
&=\int_0^{\infty} \frac{2 y \ln y}{1+y^2} \cdot \frac{d y}{2\left(1-y^2\right)} \\
&=\int_0^{\infty} \frac{y \ln y d y}{1-y^4} \\
&\stackrel{y^2\mapsto y}{=} \frac{1}{4} \int_0^{\infty} \frac{\ln y}{1-y^2} d y
\end{aligned}
$$

By my post,
$$
\begin{aligned}
&\int_0^{\infty} \frac{\ln y}{1-y^2} d y=-\frac{\pi^2}{4}
\end{aligned}
$$

We now conclude that
$$\boxed{∫_0^∞ \tanh(2x)\ln (\tanh x)dx= -\frac{\pi^2}{16}}$$

Is there any other method to evaluate the integral? Your comments and alternative methods are highly appreciated.

Best Answer

After submitting the question, I was reminded by @ Claude Leibovici that I had added $n\in N$ originally. I am sorry for that and I want to generalise the integral to $$I_n=∫_0^∞ \tanh(2x)\ln^n(\tanh x)dx,$$ where $n\in N.$ Using the same substitution $y=\tanh x$, we have

$$ \begin{aligned} I_n &=\int_0^{\infty} \frac{y \ln ^n y d y}{1-y^4} \stackrel{y^2\mapsto y}{=} \frac{1}{2^{n+1}} \int_0^{\infty} \frac{\ln ^n y}{1-y^2} d y= \frac{1}{2^n} \int_0^1 \frac{\ln ^n y}{1-y^2} d y \end{aligned} $$ For the last integral, expanding the denominator yields $$\int_0^1 \frac{\ln ^n y}{1-y^2} d y =\sum_{k=0}^{\infty} \int_0^1 y^{2 k} \ln ^n y d y =\left.\frac{\partial^n}{\partial a^n} \int_0^1 y^a d y\right|_{a=2 k} \\= \sum_{k=0}^{\infty}\frac{(-1)^n n !}{(2 k+1)^{n+1}} =n!\left(1-\frac{1}{2^{n+1}}\right) \zeta(n+1) $$

Hence we can conclude that $$\boxed{∫_0^∞ \tanh(2x)\ln^n(\tanh x)dx =\frac{(-1)^n n !}{2^n}\left(1-\frac{1}{2^{n+1}}\right)\zeta(n+1)} $$

For examples, $$I_5= -\frac{5!}{2^5}\left(1-\frac{1}{2^6}\right) \zeta(6)=-\frac{\pi^6}{256}$$ which is checked by WA.