Computing the definite integral $\int_0^1(-1)^{\left\lfloor\frac1x\right\rfloor}\,\mathrm dx$

ceiling-and-floor-functionsdefinite integralssolution-verification

$$\int_0^1(-1)^{\left\lfloor\frac1x\right\rfloor}\,\mathrm dx$$

For $x\in\left(\frac1{n+1},\frac1n\right)$, $\left\lfloor\frac1x\right\rfloor=n$, and $\frac1n-\frac1{n+1}=\frac1{n(n+1)}$. So the integral is equal to the Riemann sum

$$\int_0^1(-1)^{\left\lfloor\frac1x\right\rfloor}\,\mathrm dx=\lim_{n\to\infty}\sum_{k=1}^n\frac{(-1)^k}{k(k+1)}$$

Now, for $|x|<1$, we have

$$\frac x{1-x}=\sum_{k=1}^\infty x^k\\
\implies -x-\ln(1-x)=C_1+\sum_{k=1}^\infty\frac{x^{k+1}}{k+1}\\
\implies x-\frac{x^2}2+(1-x)\ln(1-x)=C_2+C_1x+\sum_{k=1}^\infty \frac{x^{k+2}}{(k+1)(k+2)}$$

If $x=0$, then we find $C_1=C_2=0$ so that

$$x-\frac{x^2}2+(1-x)\ln(1-x)=\sum_{k=1}^\infty \frac{x^{k+2}}{(k+1)(k+2)}\\
\implies 1-\frac x2+\frac{1-x}x\ln(1-x) = \sum_{k=2}^\infty \frac{x^k}{k(k+1)}\\
\implies 1+\frac{1-x}x\ln(1-x) = \sum_{k=1}^\infty \frac{x^k}{k(k+1)}$$

and when $x=-1$, we have

$$\int_0^1(-1)^{\left\lfloor\frac1x\right\rfloor}\,\mathrm dx=\sum_{k=1}^\infty\frac{(-1)^k}{k(k+1)}=\boxed{1-2\ln2}$$

Is this solution correct?

Best Answer

According to this answer, we get:

$$\mathscr{S}_{-1}:=\int_0^1\left(-1\right)^{\left\lfloor\frac{1}{x}\right\rfloor}\space\text{d}x=\frac{-1+\ln\left(1-\left(-1\right)\right)-\left(-1\right)\ln\left(1-\left(-1\right)\right)}{-1}=$$ $$1-2 \ln (2)\approx-0.386294\tag1$$

Related Question