Computing Ramanujan asymptotic formula from Rademacher’s formula for the partition function

combinatoricselementary-number-theoryinteger-partitionsnumber theoryramanujan-summation

I am trying to derive the Hardy-Ramanujan asymptotic formula

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$$

from Radmacher's formula for the partition function $p(n)$ given by

$$p(n)=\frac{1}{\pi\sqrt{2}}\sum_{k=1}^{\infty}A_{k}(n)\sqrt{k}\left[\frac{d}{dx}\frac{sinh\left(\frac{\pi}{k}\sqrt{\frac{2}{3}\left(x-\frac{1}{24}\right)}\right)}{\sqrt{x-\frac{1}{24}}}\right]_{x=n}$$
where
$$A_{k}(n)=\sum_{h=0, (h,k)=1}^{k-1}e^{\pi i(s(h,k)-2n\frac{h}{k})}$$ and
$$s(h,k)=\sum_{r=1}^{k-1}\frac{r}{k}\left(\frac{hr}{k}-\left\lfloor\frac{hr}{k}\right\rfloor-\frac{1}{2}\right)$$

G.E. Andrews, and any other literature on this topic, says that we can obtain the H-R asymptotic expression from the first term of the Rademacher series, i.e. for $k=1$. I don't know how to approach this as simply calculating for $k=1$ does not give the desired result. Could we perhaps try and use Lapalce's method, or the method of steepest descent?

Best Answer

Using the leading term of Radmacher's formula, we have \begin{align*} p(n) & \sim \frac{1}{{\pi \sqrt 2 }}\left[ {\frac{\mathrm{d}}{{\mathrm{d}x}}\frac{{\sinh \left( {\pi \sqrt {\frac{2}{3}\left( {x - \frac{1}{{24}}} \right)} } \right)}}{{\sqrt {x - \frac{1}{{24}}} }}} \right]_{x = n} \\ & = \frac{{4\sqrt 3 }}{{24n - 1}}\cosh \left( {\pi \sqrt {\frac{2}{3}\left( {n - \frac{1}{{24}}} \right)} } \right) - \frac{1}{\pi}\frac{{24\sqrt 3 }}{{(24n - 1)^{3/2} }}\sinh \left( {\pi \sqrt {\frac{2}{3}\left( {n - \frac{1}{{24}}} \right)} } \right). \end{align*} Now \begin{align*} \pi \sqrt {\frac{2}{3}\left( {n - \frac{1}{{24}}} \right)} = \pi \sqrt {\frac{2}{3}n} \sqrt {1 - \frac{1}{{24n}}} & = \pi \sqrt {\frac{2}{3}n} \left( {1 + \mathcal{O}\!\left( {\frac{1}{n}} \right)} \right) \\ &= \pi \sqrt {\frac{2}{3}n} + \mathcal{O}\!\left( {\frac{1}{{\sqrt n }}} \right). \end{align*} Thus, \begin{align*} & \cosh \left( {\pi \sqrt {\frac{2}{3}\left( {n - \frac{1}{{24}}} \right)} } \right),\sinh \left( {\pi \sqrt {\frac{2}{3}\left( {n - \frac{1}{{24}}} \right)} } \right) \sim \frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}\left( {n - \frac{1}{{24}}} \right)} } \right) \\ & = \frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}n} + \mathcal{O}\!\left( {\frac{1}{{\sqrt n }}} \right)} \right) = \frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right)\left( {1 +\mathcal{O}\!\left( {\frac{1}{{\sqrt n }}} \right)} \right) \\ & \sim \frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right). \end{align*} And therefore, \begin{align*} p(n) & \sim \frac{{4\sqrt 3 }}{{24n - 1}}\frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right) - \frac{1}{\pi }\frac{{24\sqrt 3 }}{{(24n - 1)^{3/2} }}\frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right) \\ & \sim \frac{{4\sqrt 3 }}{{24n}}\frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right) - \frac{1}{\pi }\frac{{24\sqrt 3 }}{{(24n)^{3/2} }}\frac{1}{2}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right) \\ & = \frac{1}{{4n\sqrt 3 }}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right)\left( {1 - \frac{{\sqrt 3 }}{{\sqrt 2 \pi n^{1/2} }}} \right) \sim \frac{1}{{4n\sqrt 3 }}\exp \left( {\pi \sqrt {\frac{2}{3}n} } \right). \end{align*}