Computing $\int_0^{\infty} e^{iax}/(x^2+1)dx$

integration

I am having trouble solving this integral with complex analysis

$$\int\limits^{\infty }_{0}\frac{e^{iax}}{x^{2} +1} dx$$

I have tried two different contours; those being

contour 2

contour 1

with both contours, I got the answer $\int\limits ^{\infty }_{0}\frac{e^{iax}}{x^{2} +1} dx=\frac{\pi }{2e^{a}}$
But according to wolfram alpha's approximation, this is wrong. Wolfram alpha had a real and imaginary part to the answer. So I'm confused. Can someone show the process for solving this with contour integration?

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\mbox{Note that} \\[2mm] &\ \left.\int_{0}^{\infty}{\expo{\ic ax} \over x^{2} + 1}\,\dd x \,\right\vert_{\ a\ \in\ \mathbb{R}} \\[2mm] = &\ \underbrace{\int_{0}^{\infty}{\cos\pars{\verts{a}x} \over x^{2} + 1}\,\dd x}_{\ds{\pi\expo{-\verts{a}} \over 2}}\ +\ \ic\,\mrm{sgn}\pars{a} \bbox[10px,#ffd]{\Im\int_{0}^{\infty}{\expo{\ic\verts{a}x} \over x^{2} + 1}\,\dd x}\label{1}\tag{1} \end{align}


Then, \begin{align} &\bbox[10px,#ffd]{\Im\int_{0}^{\infty}{\expo{\ic\verts{a}x} \over x^{2} + 1}\,\dd x} = \overbrace{-\Im\lim_{R \to \infty}\int_{0}^{\pi/2}{\exp\pars{\ic\verts{a}R\expo{\ic\theta}} \over R^{2}\expo{2\ic\theta} + 1}\,R\expo{\ic\theta}\ic\,\dd\theta} ^{\ds{=\ 0}} \\[2mm] &\ -\Im\lim_{\epsilon \to 0^{+}}\bracks{% \int_{\infty}^{1 + \epsilon}{\expo{-\verts{a}y} \over -y^{2} + 1}\,\ic\,\dd y + \int_{1 - \epsilon}^{0}{\expo{-\verts{a}y} \over -y^{2} + 1}\,\ic\,\dd y} \\[8mm] = &\ -\mrm{P.V.}\int_{0}^{\infty}{\expo{-\verts{a}y} \over y^{2} - 1} \,\dd y = -\,{1 \over 2}\,\mrm{P.V.}\int_{0}^{\infty} {\expo{-\verts{a}y} \over y - 1}\,\dd y + {1 \over 2}\int_{0}^{\infty} {\expo{-\verts{a}y} \over y + 1}\,\dd y \\[5mm] = &\ -\,{1 \over 2}\,\expo{-\verts{a}}\mrm{P.V.}\int_{-\verts{a}}^{\infty} {\expo{-y} \over y}\,\dd y + {1 \over 2}\,\expo{\verts{a}}\ \underbrace{\int_{\verts{a}}^{\infty} {\expo{-y} \over y}\,\dd y}_{\ds{\mrm{E}_{1}\pars{\verts{a}}}} \end{align}

$\ds{\mrm{E}_{1}}$ is the Exponential Integral.

Then, \begin{align} &\bbox[10px,#ffd]{\Im\int_{0}^{\infty}{\expo{\ic\verts{a}x} \over x^{2} + 1}\,\dd x} \\[5mm] = &\ -\,{1 \over 2}\,\expo{-\verts{a}}\bracks{% \mrm{P.V.}\int_{-\verts{a}}^{\verts{a}}{\expo{-y} \over y}\,\dd y + \mrm{E}_{1}\pars{\verts{a}}} + {1 \over 2}\,\expo{\verts{a}}\ \mrm{E}_{1}\pars{\verts{a}} \\[5mm] = &\ -\,{1 \over 2}\,\expo{-\verts{a}} \int_{0}^{\verts{a}}\pars{{\expo{-y} \over y} + {\expo{y} \over -y}} \,\dd y + \sinh\pars{\verts{a}}\mrm{E}_{1}\pars{\verts{a}} \\[5mm] = &\ \expo{-\verts{a}} \int_{0}^{\verts{a}}{\sinh\pars{y} \over y}\,\dd y + \sinh\pars{\verts{a}}\,\mrm{E}_{1}\pars{\verts{a}} \\[5mm] = &\ \expo{-\verts{a}}\,\mrm{Shi}\pars{\verts{a}} + \sinh\pars{\verts{a}}\,\mrm{E}_{1}\pars{\verts{a}} \label{2}\tag{2} \end{align}

$\ds{\mrm{Shi}}$ is the Hyperbolic Sine Integral.


\eqref{1} and \eqref{2} lead to: $$ \bbx{\left.\int_{0}^{\infty}{\expo{\ic ax} \over x^{2} + 1}\,\dd x \,\right\vert_{\ a\ \in\ \mathbb{R}} = {\pi\expo{-\verts{a}} \over 2} + \bracks{\vphantom{\Large A}\expo{-\verts{a}}\,\mrm{Shi}\pars{a} + \sinh\pars{a}\,\mrm{E}_{1}\pars{\verts{a}}}\ic} $$

Related Question