Computing $\int_0^1\frac{\ln(1-x^2)}{x}\operatorname{Li}_2\left(\frac{1-x}{2}\right)\ dx$

calculusclosed-formharmonic-numbersintegrationsequences-and-series

How to evaluate

$$I=\int_0^1\frac{\ln(1-x^2)}{x}\operatorname{Li}_2\left(\frac{1-x}{2}\right)\ dx\ ?$$

This integral was mentioned by @nospoon in the comments of this problem.

What I tried is integration by parts which gives

$$I=\frac12\int_0^1\frac{\operatorname{Li}_2(x^2)}{1-x}\ln\left(\frac{1+x}{2}\right)\ dx$$

Now if we use the following identity that can be found on page $95$ Eq $(4)$ of this paper

$$\sum_{n=0}^\infty(-1)^n(\overline{H}_n-\ln2)x^n=-\ln(2)+\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)x^n=\frac{\ln\left(\frac{1+x}{2}\right)}{1-x}$$

and multiply both sides by $\large \frac{\operatorname{Li}_2(x^2)}{x}$ then $\int_0^1$, we obtain

$$\int_0^1\frac{\operatorname{Li}_2(x^2)}{x(1-x)}\ln\left(\frac{1+x}{2}\right)\ dx=-\frac12\ln2\zeta(3)+\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)\int_0^1 x^{n-1}\operatorname{Li}_2(x^2)\ dx$$

where

$$\int_0^1 x^{n-1}\operatorname{Li}_2(x^2)\ dx\overset{x^2\to x}{=}\frac12\int_0^1 x^{\frac n2-1}\operatorname{Li}_2(x)\ dx=\frac12\left(\frac{2\zeta(2)}{n}-\frac{4H_{n/2}}{n^2}\right)$$

so

$$\int_0^1\frac{\operatorname{Li}_2(x^2)}{x(1-x)}\ln\left(\frac{1+x}{2}\right)\ dx=-\frac12\ln2\zeta(3)+\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)\left(\frac{\zeta(2)}{n}-\frac{2H_{n/2}}{n^2}\right)$$

and since

$$\int_0^1\frac{\operatorname{Li}_2(x^2)}{x(1-x)}\ln\left(\frac{1+x}{2}\right)\ dx=\int_0^1\frac{\operatorname{Li}_2(x^2)}{x}\ln\left(\frac{1+x}{2}\right)\ dx+2I$$

therefore

$$I=-\frac14\ln2\zeta(3)+\frac12\color{blue}{\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)\left(\frac{\zeta(2)}{n}-\frac{2H_{n/2}}{n^2}\right)}-\frac12\underbrace{\int_0^1\frac{\operatorname{Li}_2(x^2)}{x}\ln\left(\frac{1+x}{2}\right)\ dx}_{\text{manageable}}$$

any idea how to evalute the blue sum? I think I made it more complicated. Any other ideas?

Thank you.

Best Answer

Starting with the following identity that can be found on page $95$ Eq $(5)$ of this paper

$$\sum_{n=1}^\infty \overline{H}_n\frac{x^n}{n}=\operatorname{Li}_2\left(\frac{1-x}{2}\right)-\operatorname{Li}_2(-x)-\ln2\ln(1-x)-\operatorname{Li}_2\left(\frac12\right)$$

Multiply both sides by $\large \frac{\ln(1-x^2)}{x}$ then integrate from $x=0$ to $x=1$ we get

$$\underbrace{\sum_{n=1}^\infty \frac{\overline{H}_n}{n}\int_0^1x^{n-1}\ln(1-x^2)\ dx}_{\large S}$$ $$\small{=I-\underbrace{\int_0^1\frac{\operatorname{Li}_2(-x)\ln(1-x^2)}{x}\ dx}_{\large J}-\ln2\underbrace{\int_0^1\frac{\ln(1-x)\ln(1-x^2)}{x}\ dx}_{\large K}-\operatorname{Li}_2\left(\frac12\right)\underbrace{\int_0^1\frac{\ln(1-x^2)}{x}\ dx}_{\large -\frac12\zeta(2)}}$$

or

$$I=S+J+\ln2\ K-\frac12\zeta(2)\operatorname{Li}_2\left(\frac12\right)\tag1$$


Evaluating $S$

Notice that

$$\int_0^1 x^{n-1}\ln(1-x^2)\ dx\overset{x^2\to x}{=}\frac12\int_0^1 x^{n/2-1}\ln(1-x)\ dx=-\frac{H_{n/2}}{n}$$

$$\Longrightarrow S=\boxed{-\sum_{n=1}^\infty\frac{\overline{H}_nH_{n/2}}{n^2}}$$


Evaluating $J$

Writing $\ln(1-x^2)=\ln(1-x)+\ln(1+x)$ gives

$$J=\int_0^1\frac{\operatorname{Li}_2(-x)\ln(1-x)}{x}dx+\int_0^1\frac{\operatorname{Li}_2(-x)\ln(1+x)}{x}dx$$

$$=\sum_{n=1}^\infty\frac{(-1)^n}{n^2}\int_0^1 x^{n-1}\ln(1-x)\ dx-\frac12\operatorname{Li}_2^2(-x)|_0^1$$

$$=-\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^3}-\frac{5}{16}\zeta(4)$$

$$=\boxed{-2\operatorname{Li_4}\left(\frac12\right)+\frac{39}{16}\zeta(4)-\frac74\ln2\zeta(3)+\frac12\ln^22\zeta(2)-\frac{1}{12}\ln^42}$$

where we used $\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^3}$$=2\operatorname{Li_4}\left(\frac12\right)-\frac{11}4\zeta(4)+\frac74\ln2\zeta(3)-\frac12\ln^22\zeta(2)+\frac{1}{12}\ln^42$


Evaluating $K$

Similarly

$$K=\underbrace{\int_0^1\frac{\ln^2(1-x)}{x}\ dx}_{\large 2\zeta(3)}+\underbrace{\int_0^1\frac{\ln(1-x)\ln(1+x)}{x}\ dx}_{\large -\frac{5}{8}\zeta(3)}=\boxed{\frac{11}8\zeta(3)}$$

where the second integral is evaluated here.

Plug the boxed results in $(1)$ we obtain that

$$I=-2\operatorname{Li}_4\left(\frac12\right)+\frac{29}{16}\zeta(4)-\frac38\ln2\zeta(3)+\frac34\ln^22\zeta(2)-\frac1{12}\ln^42-\sum_{n=1}^\infty\frac{\overline{H}_nH_{n/2}}{n^2}$$

In here we proved

$$\sum_{n=1}^\infty\frac{\overline{H}_nH_{n/2}}{n^2}=\frac1{24}\ln^42-\frac14\ln^22\zeta(2)+\frac{21}{8}\ln2\zeta(3)-\frac{9}{8}\zeta(4)+\operatorname{Li}_4\left(\frac12\right)$$

$$\Longrightarrow I=-\frac1{8}\ln^42+\ln^22\zeta(2)-3\ln2\zeta(3)+\frac{47}{16}\zeta(4)-3\operatorname{Li}_4\left(\frac12\right)$$