Computing a gaussian integral involving both real and imaginary coefficients in a stochastic system

calculuscomplex integrationcontour-integrationdefinite integralsintegration

I am stuck with the integral:
$$\int_{-\infty}^{\infty} \frac{\exp[-a(x-b)^2]}{1+cx^2} dx$$ where $a,c$ are real and $b$ is purely imaginary.

I tried to solve it by contour integration but the integral along the semicircular edge of the contour does not end up as 0. So the method doesnt work.

I dont have any idea about other ways to solve this. I am thinking about expanding the gaussian in terms of its Taylor series and integrating the respective terms. Still it is becoming complicated.

Does anyone have any idea about this?

Best Answer

Since $b$ is purely imaginary, this is a Fourier Transform.

Assuming $a>0$, $c>0$ ,and $\Re(b) = 0$; make the substitution $- \pi s = \Im (b)$ or equivalently $-i\pi s =b$ or $\pi s = ib$

$$\begin{align*}\displaystyle & \int_{-\infty}^{\infty} \frac{\exp\left[-a\left(x-b\right)^2\right]}{1+cx^2} dx\\ \\ &= \int_{-\infty}^{\infty} \frac{\exp\left[-a\left(x+i\pi s\right)^2\right]}{1+cx^2} dx\\ \\ &= \int_{-\infty}^{\infty} \frac{\exp\left[-ax^2+a(\pi s)^2-2\pi i axs\right]}{cx^2+1} dx\\ \\ &= \frac{a^2}{c}e^{a(\pi s)^2}\int_{-\infty}^{\infty} \frac{e^{-\frac{1}{a}(ax)^2}}{(ax)^2+\frac{a^2}{c}}e^{-2\pi i (ax)s} dx\\ \\ &= \frac{a}{c}e^{a(\pi s)^2}\int_{-\infty}^{\infty} \frac{e^{-\frac{1}{a}y^2}}{y^2+\frac{a^2}{c}}e^{-2\pi iys} dy\\ \\ &= \frac{a}{c}e^{a(\pi s)^2}(2\pi)^2\frac{1}{2\left(\frac{2\pi a}{\sqrt{c}}\right)}\int_{-\infty}^{\infty} \frac{2\left(\frac{2\pi a}{\sqrt{c}}\right)}{(2\pi y)^2+\left(\frac{2\pi a}{\sqrt{c}}\right)^2}\space e^{-\pi^2\left(\frac{y}{\pi\sqrt{a}}\right)^2}\space e^{-2\pi iys} dy\\ \\ &= \frac{\pi}{\sqrt{c}}e^{a(\pi s)^2}\mathscr{F}\left\{ \frac{2\left(\frac{2\pi a}{\sqrt{c}}\right)}{(2\pi y)^2+\left(\frac{2\pi a}{\sqrt{c}}\right)^2}\space e^{-\pi\left(\frac{y}{\sqrt{\pi a}}\right)^2}\right\} \\ \\ &= \frac{\pi}{\sqrt{c}}e^{a(\pi s)^2}\left[\mathscr{F}\left\{ \frac{2\left(\frac{2\pi a}{\sqrt{c}}\right)}{(2\pi y)^2+\left(\frac{2\pi a}{\sqrt{c}}\right)^2}\right\} * \mathscr{F}\left\{ e^{-\pi\left(\frac{y}{\sqrt{\pi a}}\right)^2}\right\} \right]\\ \\ &= \frac{\pi}{\sqrt{c}}e^{a(\pi s)^2}\left[e^{-\frac{2 a}{\sqrt{c}}|\pi s|} * \sqrt{\pi a} e^{-a\left(\pi s\right)^2}\right] \\ \\ &= \pi \sqrt{\frac{\pi a}{c}}e^{a(\pi s)^2}\int_{-\infty}^{\infty}e^{-\frac{2 a}{\sqrt{c}}|\pi \tau|} e^{-a\left(\pi s -\pi \tau\right)^2}\space d\tau \\ \\ &= \pi \sqrt{\frac{\pi a}{c}}e^{a(\pi s)^2}\left[\int_{-\infty}^{0}e^{\frac{2 a}{\sqrt{c}}\pi \tau} e^{-a\left(\pi s -\pi \tau\right)^2}\space d\tau +\int_{0}^{\infty}e^{-\frac{2 a}{\sqrt{c}}\pi \tau} e^{-a\left(\pi s -\pi \tau\right)^2}\space d\tau \right]\\ \\ &= \pi \sqrt{\frac{\pi a}{c}}\left(\int_{-\infty}^{0}\exp\left[-a\left([\pi\tau]^2-2\left[\pi s+\frac{1}{\sqrt{c}}\right]\pi \tau\right)\right]\space d\tau +\int_{0}^{\infty}\exp\left[-a\left([\pi\tau]^2-2\left[\pi s-\frac{1}{\sqrt{c}}\right]\pi \tau\right)\right]\space d\tau \right)\\ \\ &= \pi \sqrt{\frac{\pi a}{c}}\left(e^{a\left(\pi s+\frac{1}{\sqrt{c}}\right)^2}\int_{-\infty}^{0}\exp\left[-a\left(\pi\tau-\left[\pi s+\frac{1}{\sqrt{c}}\right]\right)^2\right]\space d\tau +e^{a\left(\pi s-\frac{1}{\sqrt{c}}\right)^2}\int_{0}^{\infty}\exp\left[-a\left(\pi\tau-\left[\pi s-\frac{1}{\sqrt{c}}\right]\right)^2\right]\space d\tau \right)\\ \\ &= \pi \sqrt{\frac{\pi a}{c}}\left(e^{a\left(\pi s+\frac{1}{\sqrt{c}}\right)^2}\frac{1}{\pi\sqrt{a}}\int_{-\infty}^{-\sqrt{a}\left(\pi s+\frac{1}{\sqrt{c}}\right)}e^{-u^2}\space du +e^{a\left(\pi s-\frac{1}{\sqrt{c}}\right)^2}\frac{1}{\pi\sqrt{a}}\int_{-\sqrt{a}\left(\pi s-\frac{1}{\sqrt{c}}\right)}^{\infty}e^{-u^2}\space du\right)\\ \\ &= \sqrt{\frac{\pi}{c}}\left(e^{a\left(\pi s+\frac{1}{\sqrt{c}}\right)^2}\int_{-\infty}^{-\sqrt{a}\left(\pi s+\frac{1}{\sqrt{c}}\right)}e^{-u^2}\space du +e^{a\left(\pi s-\frac{1}{\sqrt{c}}\right)^2}\int_{-\sqrt{a}\left(\pi s-\frac{1}{\sqrt{c}}\right)}^{\infty}e^{-u^2}\space du\right)\\ \\ &= \frac{\pi}{2}\frac{1}{\sqrt{c}}\left(e^{a\left(\pi s+\frac{1}{\sqrt{c}}\right)^2}\mathrm{erf}(u)\biggr{|}_{-\infty}^{-\sqrt{a}\left(\pi s+\frac{1}{\sqrt{c}}\right)} +e^{a\left(\pi s-\frac{1}{\sqrt{c}}\right)^2}\mathrm{erf}(u)\biggr{|}_{-\sqrt{a}\left(\pi s-\frac{1}{\sqrt{c}}\right)}^{\infty}\right)\\ \\ &= \frac{\pi}{2}\frac{1}{\sqrt{c}}\left(e^{a\left(\pi s+\frac{1}{\sqrt{c}}\right)^2}\left[\mathrm{erf}\left(-\sqrt{a}\left[\pi s+\frac{1}{\sqrt{c}}\right]\right)+1\right] +e^{a\left(\pi s-\frac{1}{\sqrt{c}}\right)^2}\left[1 -\mathrm{erf}\left(-\sqrt{a}\left[\pi s-\frac{1}{\sqrt{c}}\right]\right)\right]\right)\\ \\ &= \frac{\pi}{2}\frac{1}{\sqrt{c}}\left(e^{\left[-\sqrt{a}\left(ib+\frac{1}{\sqrt{c}}\right)\right]^2}\left[\mathrm{erf}\left(-\sqrt{a}\left[ib+\frac{1}{\sqrt{c}}\right]\right)+1\right] +e^{\left[-\sqrt{a}\left(ib-\frac{1}{\sqrt{c}}\right)\right]^2}\left[1 -\mathrm{erf}\left(-\sqrt{a}\left[ib-\frac{1}{\sqrt{c}}\right]\right)\right]\right)\\ \end{align*}$$

Related Question