Compute the value of the surface integral .

multivariable-calculus

Let $S$ denote the hemisphere $x^2+y^2+z^2=1$ , $z\ge0$, and let $F(x,y,z)=xi+yj$. Let $n$ be the unit outward normal of $S$. Compute the value of the surface integral $\iint_S{F.n} dS$ , using
the explicit representation $z=\sqrt{1-x^2-y^2}$

My attempt : I know the formula $\iint_S{F.n} dS= \iint_{T} F.n |\frac{\partial{r}}{\partial u} \times \frac{\partial{r}}{\partial v}|dudv$

But i don't know how to apply the formula in the given question

Best Answer

Using divergence theorem, one can easily see that the result is volume of the unit sphere which is $\frac{4\pi}{3}$. But as the question specifically seeks to use representation $z=\sqrt{1-x^2-y^2}$ and do surface integral,

use the fact that radially outward normal vector for a sphere is $(x,y,z)$ which can be rewritten as $(\frac{x}{\sqrt{1-x^2-y^2}}, \frac{y}{\sqrt{1-x^2-y^2}}, 1)$ using the representation $z = \sqrt{1-x^2-y^2}$.

Or you can take partial derivative as below,

$-\displaystyle \frac{\partial z}{\partial x} = \frac{x}{\sqrt{1-x^2-y^2}}$

$-\displaystyle \frac{\partial z}{\partial y} = \frac{y}{\sqrt{1-x^2-y^2}}$

So the normal vector, $\vec n = (\frac{x}{\sqrt{1-x^2-y^2}}, \frac{y}{\sqrt{1-x^2-y^2}}, 1)$

$\vec F = (x,y,0)$

$\vec F \cdot \vec n = \frac{x^2 + y^2}{\sqrt{1-x^2-y^2}}$

Surface integral should be

$\displaystyle \int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{x^2 + y^2}{\sqrt{1-x^2-y^2}} \ dx \ dy$