Compute the sum $\cot^2\left(\frac{\pi}{9}\right)+\cot^2\left(\frac{2\pi}{9}\right)+\cot^2\left(\frac{4\pi}{9}\right)=~?$

trigonometry

How to compute the sum of $\cot^2\left(\frac{\pi}{9}\right)+\cot^2\left(\frac{2\pi}{9}\right)+\cot^2\left(\frac{4\pi}{9}\right)=~?$

The answer is $9$.

I tried to use the formula $\cot (2\theta)=\dfrac{\cot^2\theta-1}{2\cot\theta}$ but it is getting more and more complicated.

Best Answer

Let $S= \cot^2\frac{\pi}{9}+\cot^2\frac{2\pi}{9}+\cot^2\frac{4\pi}{9}$ and note that $\cot \frac{4\pi}9=\tan\frac{\pi}{18}$

$$\begin{align} S&=\frac{1}{\sin^2\frac{\pi}9} -1+\frac{1}{\sin^2\frac{2\pi}9}-1+\frac{1}{\cos^2\frac{\pi}{18}}-1 \\ \\ &=\frac{1}{\sin^2\frac{2\pi}9}+\frac{1+4\sin^2\frac{\pi}{18}}{\sin^2\frac{\pi}{9}}-3\\ \\ &=\frac{1+4\cos^2\frac{\pi}{9}\left(1+4\sin^2\frac{\pi}{18}\right)}{\sin^2\frac{2\pi}{9}}-3\\ \\ &=\frac{7+6\cos\frac{2\pi}{9}-4\cos\frac{\pi}{9}-4\cos\frac{\pi}{9}\cos\frac{2\pi}{9}}{\sin^2\frac{2\pi}{9}}-3\\ \\ &=\frac{6-6\cos\frac{\pi}{9}+6\cos\frac{2\pi}{9}}{\sin^2\frac{2\pi}{9}}-3\\ \\ &=\frac{6\cos\frac{\pi}{9}\left(2\cos\frac{\pi}{9}-1\right)}{\sin^2\frac{2\pi}{9}}-3\\ \\ &=\frac{24\cos\frac{\pi}{9}\left(\sin\frac{2\pi}{9}\sin\frac{\pi}{9}\right)}{\sin^2\frac{2\pi}{9}}-3\\ \\ &=12-3\\ \\ &=9 \end{align}$$