Compute the limit: $\lim_{n\to\infty}\int_0^\infty\frac{n^2[\cos(x/n^2)-1]}{1+x^3}dx.$

analysiscalculusintegrationlimitsreal-analysis

How to calculate the following limit:$$\lim_{n\to\infty}\int_0^\infty\frac{n^2[\cos(x/n^2)-1]}{1+x^3}dx.$$


I have tried dominated convergence theorem but I cannot find a proper dominated function. I also tried applying the residue theorem, but if we choose the upper-semi circle as the contour then the integrand is not an even function. And I tried to expand the function into power series, but nothing helps. Can someone give me a hint? Thank you.

Best Answer

Let $f(x) = \int_{x}^{\infty} \frac{\mathrm{d}t}{1+t^3}$. Then $f$ is integrable on $[0, \infty)$. Indeed, $f$ is bounded by $f(0)$ and $f(x) \asymp 1/x^2$ as $x\to\infty$. Now by integration by parts,

\begin{align*} \int_{0}^{\infty} \frac{n^2(\cos(x/n^2)-1)}{1+x^3}\,\mathrm{d}x &= -\int_{0}^{\infty} n^2(\cos(x/n^2)-1)f'(x) \,\mathrm{d}x \\ &= \underbrace{\left[ -n^2(\cos(x/n^2)-1)f(x) \right]_{0}^{\infty}}_{=0} - \int_{0}^{\infty} \sin(x/n^2)f(x) \, \mathrm{d}x. \end{align*}

Now by the dominated convergence theorem,

$$ \lim_{n\to\infty} \int_{0}^{\infty} \frac{n^2(\cos(x/n^2)-1)}{1+x^3}\,\mathrm{d}x = - \int_{0}^{\infty} \lim_{n\to\infty} \sin(x/n^2)f(x) \, \mathrm{d}x = 0. $$


Addendum. A more detailed analysis, with a bit of help from Mathematica 11, shows that

$$ \int_{0}^{\infty} \frac{n^2(\cos(x/n^2)-1)}{1+x^3}\,\mathrm{d}x = -\frac{1}{n^2}\left(\log n + \frac{3}{4} - \frac{\gamma}{2} + o(1) \right) $$

as $n\to\infty$, where $\gamma$ is the Euler-Mascheroni constant.