Compute the integral $\int_S \operatorname{curl}(F)\cdot n\ dS$

calculusdifferential-geometryintegrationmultivariable-calculusreal-analysis

Let $S$ be the upper hemisphere of radius $r>0$ centered at the origin in $\mathbb R^3$. Let $F:\mathbb R^3\to \mathbb R^3$ $$F(x,y,z)=(xy^2\tanh(x^2+z),x+y^4e^{-x^2}\sin z,x^2(x^2+3)ye^{-x^2-y^2-z^2})$$
Compute $$\int_S \operatorname{curl}(F) \cdot n \ dS$$ where $n$ is the outward unit normal.

What is the most reasonable way to compute this integral? Am I supposed to compute $\operatorname{curl}(F)$ and the normal? Are there simplifications enabling one to make the computation of $\operatorname{curl}(F)$ easier? (Otherwise it seems too much work). Am I supposed to apply Stoke's theorem maybe?

Best Answer

Using Stokes' theorem the integral is

$$I =\int_S \text{curl } \mathbf{F} \cdot \mathbf{n} \,dS = \oint_C \mathbf{F} \cdot d \,\mathbf{l} $$

where $C$ is the circle of radius $r$ centered at the origin of the $xy-$plane.

On $C$ we have, using polar coordinates, $F_x = xy^2 \tanh(x^2) = r^3\cos \theta\sin^2 \theta \tanh(r^2 \cos^2 \theta)$ and $F_y = x = r \cos \theta$. The unit tangent to $C$ is $- \sin \theta \, \mathbf{e}_x + \cos \theta \, \mathbf{e}_y$, with no $z-$component. Consequently,

$$I = \int_0^{2\pi} r^3\cos\theta \sin^2 \theta \tanh(r^2 \cos^2 \theta) (-\sin \theta) r \, d \theta + \int_0^{2 \pi}r \cos \theta (\cos \theta) r\,d \theta \\ = -r^4 \underbrace{\int_0^{2\pi}\cos \theta \sin^3 \theta \tanh(r^2\cos^2 \theta) \, d \theta}_{= \,0 \text{ by symmetry}} \, + \,r^2\int_0^{2\pi}\cos^2 \theta \, d \theta \\ = \pi r^2$$