Compute the expectation of $e^{W_t}\int_0^t e^{-W_s} dW_s$

stochastic-calculusstochastic-integrals

I am having some trouble solving $\mathbb{E}[e^{W_t}\int_0^t e^{-W_s} dW_s]$.
My idea would be to apply itos formular on $e^{W_t}$ to get
\begin{align}\mathbb{E}[e^{W_t}\int_0^t e^{-W_s} dW_s] = \mathbb{E}[(1+\int_0^t e^{W_s} dW_s+1/2\int_0^t e^{W_s} ds)\int_0^t e^{-W_s} dW_s] \\ = \mathbb{E}[\int_0^t e^{-W_s} dW_s]+\mathbb{E}[\int_0^t e^{W_s-W_s} ds]+1/2\mathbb{E}[\int_0^t e^{W_s} ds\int_0^t e^{-W_s} dW_s]
\end{align}

My assumption would be that the first term is a martingale, thus having expectation $0$. The second expectation is deterministic and should equal to $t$. Unfortunately, I have no idea how to solve the third expectation.

Best Answer

It is well-known and easy to see by Ito's lemma that $$ M_t=e^{W_t-t/2} $$ is a martingale that satsifes the SDE $$ dM_t=M_t\,dW_t\,. $$ Equivalently, $$ M_t=1+\int_0^tM_s\,dW_s\,. $$ The calculation of $\mathbb E[e^{W_t}\int_0^te^{-W_s}\,dW_s]$ then boils down to \begin{align} &e^{t/2}\,\mathbb E\Big[M_t\int_0^te^{-W_s}\,dW_s\Big]= e^{t/2}\,\mathbb E\Big[\underbrace{\Big(\int_0^te^{W_s-s/2}\,dW_s\Big)}_{\textstyle=:X_t}\underbrace{\Big(\int_0^te^{-W_s}\,dW_s\Big)}_{\textstyle=:Y_t}\Big]\\ &=e^{t/2}\mathbb E\big[\big\langle X,Y\big\rangle_t\big]=e^{t/2}\mathbb E\Big[\int_0^te^{W_s-s/2}\,e^{-W_s}\,ds\Big]=e^{t/2}\int_0^te^{-s/2}\,ds\,. \end{align} Can you finish?