Compute $\Pr(X<Y)$ with $X$ and $Y$ being two random variables

probabilityrandom variables

Let $X$ and $Y$ be two independent variables where $X$ follows an exponential distribution with mean $\frac 1 \lambda$, while $Y$ follow an Erlang distribution with mean $\frac k \gamma$.

Compute the probability $\Pr(X<Y)$.
Here is what I've tried:

$$\int_{0}^{+\infty}\int_{0}^{y} p(x,y) \,dxdy $$
$$=\int_{0}^{+\infty}\frac{\gamma^ky^{k-1}e^{-\gamma y}}{(k-1)!}\int_{0}^{y} \lambda e^{-\lambda x} \,dxdy $$
$$=\frac{\gamma^k}{(k-1)!}\int_{0}^{+\infty}y^{k-1}e^{-\gamma y}(1- e^{-\lambda y}) \,dy, $$

but I am stuck with the last integral.

Best Answer

$$\begin{align} \int_{0}^{\infty}\int_{0}^{y} p(x,y) \,dxdy &=\int_{0}^{\infty}\frac{\gamma^ky^{k-1}e^{-\gamma y}}{(k-1)!}\int_{0}^{y} \lambda e^{-\lambda x} \,dxdy \\ &=\frac{\gamma^k}{(k-1)!}\int_{0}^{\infty}y^{k-1}e^{-\gamma y}(1-e^{-\lambda y}) \,dy\\ &=\frac{\gamma^k}{(k-1)!}\int_{0}^{\infty}y^{k-1}e^{-\gamma y}\,dy -\frac{\gamma^k}{(k-1)!}\int^\infty_0 y^{k-1}e^{-(\gamma+\lambda) y} \,dy\\ &=\frac{1}{(k-1)!}\int^\infty_0 t^{k-1}e^{-t}\,dt-\frac{\gamma^k}{(\gamma+\lambda)^k(k-1)!}\int^\infty_0t^{k-1}e^{-t}\,dt\\ &=\frac{\Gamma(k)}{(k-1)!}-\frac{\gamma^k\Gamma(k)}{(\gamma+\lambda)^k(k-1)!}=1-\frac{\gamma^k}{(\lambda+\gamma)^k} \end{align} $$