Compositum of intersection fields

abstract-algebrafield-theorygalois-extensions

Suppose that $K_1$, $K_2$ and $K_3$ are finite Galois extensions of a field $k$. Let $(K_1 \cap K_3)(K_2 \cap K_3)$ be the compositum of $(K_1 \cap K_3)$ and $(K_2 \cap K_3)$. Is it always true that $$(K_1 \cap K_3)(K_2 \cap K_3) = K_1 K_2 \cap K_3?$$
I know that $(K_1 \cap K_3) \subseteq K_1 K_2 \cap K_3$ and $(K_2 \cap K_3) \subseteq K_1 K_2 \cap K_3$, so therefore $(K_1 \cap K_3)(K_2 \cap K_3) \subseteq K_1 K_2 \cap K_3$, but I am not sure if it is possible to show that $K_1 K_2 \cap K_3$ is the smallest field containing $(K_1 \cap K_3)$ and $(K_2 \cap K_3)$. Also, are the hypothesis of the fields being Galois or finite necessary here?

Best Answer

No! Let $k=\mathbb{Q}$, and consider $K_1=\mathbb{Q}(\sqrt{2}), K_2=\mathbb{Q}(\sqrt{3})$ and $K_3=\mathbb{Q}(\sqrt{6})$. We have that $K_1 \cap K_3 = K_2 \cap K_3=\mathbb{Q}$, and so their compositum is also $\mathbb{Q}$. On the other hand, $K_1K_2 = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ contains $\sqrt{6}$, and so $$ K_1K_2 \cap K_3 = \mathbb{Q}(\sqrt{6}) \supsetneq \mathbb{Q} = (K_1 \cap K_3)(K_2 \cap K_3). $$

Related Question