Compositeness test using third order recurrence relation

elementary-number-theoryexamples-counterexamplesprime numbers

Can you prove or disprove the following claim:

Given integer $P$ , where $P>1$ let $S_k=P \cdot S_{k-1}-(2P-1) \cdot S_{k-2}+P \cdot S_{k-3}$ with $S_0=0$ , $S_1=1$ , $S_2=P-1$ . Let $n$ be an odd natural number greater than $2$ such that $\operatorname{gcd}(P,n)=1$. Let $\left(\frac{D}{n}\right)$ be the Jacobi symbol where $D$ represents the discriminant of the characteristic polynomial: $x^3-Px^2+(2P-1)x-P$, and let $\delta(n)=n-\left(\frac{D}{n}\right)$ , then:
$$\text{If } n \text{ is a prime then } S_{\delta(n)} \equiv 0 \pmod{n}$$

You can run this test here.

I have verified this claim for $n \in [3,10000]$ with $P \in [2,100]$ . I was searching for counterexample using the following PARI/GP code:

rec(m,P)={s0=0;s1=1;s2=P-1;l=3;while(l<=m,s=P*s2-(2*P-1)*s1+P*s0;s0=s1;s1=s2;s2=s;l++);return(s);}
RPT(n1,n2,P)={Q=-(2*P-1);R=P;D=P^2*Q^2-18*P*Q*R+4*Q^3-4*P^3*R-27*R^2;forprime(n=n1,n2,if(gcd(n,P)==1,d=n-kronecker(D,n);if(Mod(rec(d,P),n)!=0,print(n);break)))}

Best Answer

The claim is true.

Proof :

Let $d:=P^2-6P+1$.

Since the roots of $x^3-Px^2+(2P-1)x-P=0$ are $x=1,\frac{P-1\pm\sqrt{d}}{2}$, there exist $A,B,C$ such that $$S_k=A\bigg(\frac{P-1-\sqrt{d}}{2}\bigg)^k+B\bigg(\frac{P-1+\sqrt{d}}{2}\bigg)^k+C\cdot 1^k$$ Using $S_0=0,S_1=1$ and $S_2=P-1$, we get $A = \frac{-1}{\sqrt{d}}, B =\frac{1}{\sqrt{d}}$ and $C=0$ to have $$ S_k=\frac{-1}{\sqrt{d}}\bigg(\frac{P-1-\sqrt{d}}{2}\bigg)^k+\frac{1}{\sqrt{d}}\bigg(\frac{P-1+\sqrt{d}}{2}\bigg)^k\tag1$$

Also, we get

$$\begin{align}D&=P^2(2P-1)^2-4(2P-1)^3-4P^4-27P^2+18P^2(2P-1) \\\\&=4d\end{align}$$ so $$\bigg(\frac Dn\bigg)=\bigg(\frac{2^2}{n}\bigg)\bigg(\frac{d}{n}\bigg)=\bigg(\frac{d}{n}\bigg)$$

  • Case 1 : $n$ is a prime such that $\left(\frac{d}{n}\right)=0$

    Using $(1)$, we get $$\begin{align}2^nS_{\delta(n)}&=2^nS_n \\\\&=\frac{1}{\sqrt d}\bigg(\bigg(P-1+\sqrt{d}\bigg)^n-\bigg(P-1-\sqrt{d}\bigg)^n\bigg) \\\\&=\frac{1}{\sqrt d}\sum_{j=0}^{n}\binom nj(P-1)^{n-j}\bigg((\sqrt d)^j-(-\sqrt d)^j\bigg) \\\\&=\sum_{k=1}^{(n+1)/2}\binom{n}{2k-1}2d^{k-1}\end{align}$$ Since $\binom nm\equiv 0\pmod n$ for $1\le m\le n-1$, we get $$\begin{align}2^nS_{\delta(n)}&\equiv 2d^{(n-1)/2}\pmod n \\\\&\equiv 0\pmod n\end{align}$$It follows from $\gcd(2^n,n)=1$ that $$S_{\delta(n)}\equiv 0\pmod n$$
  • Case 2 : $n$ is a prime such that $\left(\frac{d}{n}\right)=1$

    Using $(1)$, we get $$S_{\delta(n)}=S_{n-1}=\frac{-1}{\sqrt{d}}\bigg(\frac{P-1-\sqrt{d}}{2}\bigg)^{n-1}+\frac{1}{\sqrt{d}}\bigg(\frac{P-1+\sqrt{d}}{2}\bigg)^{n-1}$$Multiplying it by $2^{n-1}(P-1-\sqrt{d})(P-1+\sqrt{d})=2^{n+1}P$ gives$$\begin{align}&2^{n+1}PS_{\delta(n)} \\\\&=\bigg(-\frac{P-1}{\sqrt{d}}-1\bigg)\bigg(P-1-\sqrt{d}\bigg)^{n}+\bigg(\frac{P-1}{\sqrt{d}}-1\bigg)\bigg(P-1+\sqrt{d}\bigg)^{n} \\\\&=\frac{P-1}{\sqrt{d}}\bigg(\bigg(P-1+\sqrt{d}\bigg)^{n}-\bigg(P-1-\sqrt{d}\bigg)^{n}\bigg) \\&\qquad\qquad-\bigg(\bigg(P-1+\sqrt{d}\bigg)^{n}+\bigg(P-1-\sqrt{d}\bigg)^{n}\bigg) \\\\&=\frac{P-1}{\sqrt{d}}\sum_{j=0}^{n}\binom nj(P-1)^{n-j}\bigg((\sqrt{d})^j-(-\sqrt{d})^j\bigg) \\&\qquad\qquad-\sum_{j=0}^{n}\binom nj(P-1)^{n-j}\bigg((\sqrt{d})^j+(-\sqrt{d})^j\bigg) \\\\&=\sum_{k=1}^{(n+1)/2}\binom n{2k-1}(P-1)^{n-2k+2}2d^{k-1}-\sum_{k=0}^{(n-1)/2}\binom n{2k}(P-1)^{n-2k}2d^{k} \\\\&\equiv 2(P-1)d^{(n-1)/2}-2(P-1)^{n}\pmod n \\\\&\equiv 2(P-1)\bigg(1-(P-1)^{n-1}\bigg)\pmod n \\\\&\equiv 0\pmod n\end{align}$$ since if $P\not\equiv 1\pmod n$, then it follows from $\gcd(P-1,n)=1$ that $(P-1)^{n-1}\equiv 1\pmod n$.

    Since we have $2^{n+1}PS_{\delta(n)}\equiv 0\pmod n$, it follows from $\gcd(2^{n+1}P,n)=1$ that $$S_{\delta(n)}\equiv 0\pmod n$$

  • Case 3 : $n$ is a prime such that $\left(\frac{d}{n}\right)=-1$

    Using $(1)$, we have $$\begin{align}&2^{n+1}S_{\delta(n)}=2^{n+1}S_{n+1} \\\\&=\bigg(-\frac{P-1}{\sqrt{d}}+1\bigg)\bigg(P-1-\sqrt{d}\bigg)^{n}+\bigg(\frac{P-1}{\sqrt{d}}+1\bigg)\bigg(P-1+\sqrt{d}\bigg)^{n} \\\\&=\frac{P-1}{\sqrt{d}}\bigg(\bigg(P-1+\sqrt{d}\bigg)^{n}-\bigg(P-1-\sqrt{d}\bigg)^{n}\bigg) \\&\qquad\qquad+\bigg(\bigg(P-1+\sqrt{d}\bigg)^{n}+\bigg(P-1-\sqrt{d}\bigg)^{n}\bigg) \\\\&=\frac{P-1}{\sqrt{d}}\sum_{j=0}^{n}\binom nj(P-1)^{n-j}\bigg((\sqrt{d})^j-(-\sqrt{d})^j\bigg) \\&\qquad\qquad+\sum_{j=0}^{n}\binom nj(P-1)^{n-j}\bigg((\sqrt{d})^j+(-\sqrt{d})^j\bigg) \\\\&=\sum_{k=1}^{(n+1)/2}\binom n{2k-1}(P-1)^{n-2k+2}2d^{k-1}+\sum_{k=0}^{(n-1)/2}\binom n{2k}(P-1)^{n-2k}2d^{k} \\\\&\equiv 2(P-1)d^{(n-1)/2}+2(P-1)^{n}\pmod n \\\\&\equiv 2(P-1)\bigg((P-1)^{n-1}-1\bigg)\pmod n \\\\&\equiv 0\pmod n\end{align}$$from which we get $$2^{n+1}S_{\delta(n)}\equiv 0\pmod n$$It follows from $\gcd(2^{n+1},n)=1$ that $$S_{\delta(n)}\equiv 0\pmod n$$

From the three cases above, the claim follows.$\quad\blacksquare$

Related Question