Combinatorial proof of Negative Binomial Identity $(1+x)^{-n}= \sum_{k=0}^{\infty} (-1)^k \binom{n+k-1}{k} x^k$

binomial theorembinomial-coefficientscombinatoricspermutations

For the (usual) Binomial theorem with positive integer exponent, there is a well known nice combinatorial proof.

I am eager to learna similar argument for the proof of negative binomial series: $$(1+x)^{-n}= \sum_{k=0}^{\infty} (-1)^k \binom{n+k-1}{k} x^k.$$

I found that the quantity $\binom{n+k-1}{k}$ has the combinatorial interpretation that "the number of ways to distributing $k$ indistinguishable balls into $n$ distinguishable boxes without any restriction."

I tried to use that fact, but could not find the right trick. Do any of you know a way to go through this?

Best Answer

$\binom{n+k-1}{k}$ is the number of ways to place $k$ indistinguishable balls into $n$ boxes. Consider $k$ stars \begin{eqnarray*} \underbrace{** \cdots *}_{ k \text{ stars}} \end{eqnarray*} insert $n-1$ bars to form $n$ boxes \begin{eqnarray*} \underbrace{** }_{ k_1 \text{ stars}} \mid \underbrace{*** }_{ k_2 \text{ stars}} \mid \cdots \mid \underbrace{*}_{ k_n \text{ stars}} \\ \sum_{i=1}^{n} k_i=k. \end{eqnarray*} This is the same as picking the terms from \begin{eqnarray*} (1+x+\cdots+x^{k_1}+\cdots) (1+x+\cdots+x^{k_2}+\cdots) \cdots (1+x+\cdots+x^{k_n}+\cdots) \end{eqnarray*} So \begin{eqnarray*} \frac{1}{(1-x)^n} =\sum_{k=0}^{\infty} \binom{n+k-1}{k} x^k . \end{eqnarray*}