Closed-forms for the integral $\int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$

closed-formdefinite integralsintegrationpolylogarithmspecial functions

(This is related to this question.)

Define the integral,

$$I_n = \int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx$$

with polylogarithm $\operatorname{Li}_n(x)$. Given the Nielsen generalized polylogarithm $S_{n,p}(z)$,

$$S_{n,p}(z) = \frac{(-1)^{n+p-1}}{(n-1)!\,p!}\int_0^1\frac{(\ln t)^{n-1}\big(\ln(1-z\,t)\big)^p}{t}dt$$

Then it seems,

$$I_1 = -S_{1,1}(-1)-\tfrac12\ln(2)\ln(2)$$

$$I_2 = -5S_{1,2}(-1)+\ln(2)\,\zeta(2)\quad$$

$$\quad\qquad I_3 = -2S_{1,3}(-1)+\ln(2)\,\zeta(3)-\tfrac12\zeta(4)$$

where $S_{1,1}(-1) = -\tfrac12\zeta(2)$, and $S_{1,2}(-1) = \tfrac18\zeta(3)$ and $S_{1,3}(-1)$ has a more complicated closed-form given in the linked post.

Q: What is $I_4$ and $I_5$? In general, can $I_n$ be expressed by the Nielsen generalized polylogarithm?

P.S. Note that $\operatorname{Li}_n(z), \ln(z), \zeta(z)$ are just special cases of this function.

Best Answer

Based on Three-sided coin's comments, it seems

$$I_4 = \int_0^1 \frac{\operatorname{Li}_4(x)}{1+x}dx =\ln(2)\zeta(4)+\tfrac34\zeta(2)\zeta(3)-\tfrac{59}{32}\zeta(5) \approx 0.321352\dots$$

(Note: Confirmed as correct by Brevan's answer.) Connecting it to Three-sided coin's other integrals, then

$$I_4 = \ln(2)\zeta(4)-\tfrac12\zeta(2)\zeta(3)-h_1$$ $$I_4 = \ln(2)\zeta(4)+\tfrac14\zeta(2)\zeta(3)-h_2$$

where,

$$h_1=\int_0^1\frac{\operatorname{Li}_2(x)\,\color{blue}{\operatorname{Li}_2(-x)}}{x}dx = -\tfrac54\zeta(2)\zeta(3)+\tfrac{59}{32}\zeta(5)$$

$$h_2=\int_0^1\frac{\color{blue}{\operatorname{Li}_3(-x)}\ln(1-x)}{x}dx = -\tfrac12\zeta(2)\zeta(3)+\tfrac{59}{32}\zeta(5)$$

which implies,

$$h_1-h_2 =\int_0^1\frac{\operatorname{Li}_2(x)\,\operatorname{Li}_2(-x)}{x}dx- \int_0^1\frac{\operatorname{Li}_3(-x)\ln(1-x)}{x}dx =-\tfrac34\zeta(2)\zeta(3)$$


Compare to the similar integrals here that he mentioned,

$$h_3= \int_0^1\frac{\operatorname{Li}_2(x)\,\color{blue}{\operatorname{Li}_2(x)}}{x}dx = 2\zeta(2)\zeta(3)-3\zeta(5)$$

$$h_4 = \int_0^1\frac{\color{blue}{\operatorname{Li}_3(x)}\ln(1-x)}{x}dx =\zeta(2)\zeta(3)-3\zeta(5$$

which has the proven relation,

$$h_3-h_4 = \int_0^1\frac{\operatorname{Li}_2(x)\,\operatorname{Li}_2(x)}{x}dx - \int_0^1\frac{\operatorname{Li}_3(x)\ln(1-x)}{x}dx = \zeta(2)\zeta(3)$$


Update: Per Brevan's answer:

$$I_n = \int_0^1\frac{\operatorname{Li}_n(x)}{1+x}dx=(-1)^nA(n)+\sum_{k=1}^{n-1}(-1)^{k+1}\eta(k)\zeta(n+1-k)$$ with Dirichlet eta function $\eta(k)$ and $$A(n) = \sum_{k=1}^\infty \frac{H_k}{k^n}(-1)^k$$

is the $n$th "Alternating Euler Sum". However, since,

$$A(n,z) = \sum_{k=1}^\infty \frac{H_k}{k^n}z^k =S_{n-1,2}(z)+\operatorname{Li}_{n+1}(z)$$

for $-1\leq z\leq 1$, then $I_n$ can be expressed by Nielsen polylogs $S_{n,p}(z)$ as I suspected.

Related Question