Closed form: show that $\sum_{n=1}^\infty\frac{a_n}{(n+1)4^n}=\zeta(2) $

calculusintegrationreal-analysisrecurrence-relationssequences-and-series

Let $a_n$ be the sequence defined via
$$ a_n=\sum_{k=1}^n{2n \choose {n-k}}\frac{1+(-1)^{k+1}}{k^2}$$
then prove that
$$\sum_{n=1}^\infty\frac{a_n}{(n+1)4^n}=\frac{\pi^2}{6} $$

I tried simplifying $a_n$ first, but in the end the best I got is an expression according to Wolfram, using Hypergeometric functions:
$$a_n={2n\choose {n-1}}\left(_4F_3\left({{1,1,1,1-n}\atop{2,2,2+n}};1\right)+\ _4F_3\left({{1,1,1,1-n}\atop{2,2,2+n}};-1\right)\right) $$
I didn't manage to simplify it further. This work does not seem helpful, since Hypergeometric functions $_4F_3$ are no easier to work with.

At this point I'm stuck. I believe representing $a_n$ with an integral would simplify the problem, but didn't manage to achieve it for now.

Best Answer


Let $\mathcal{S}$ denote the sum of the following infinite series:

$$\mathcal{S}:=\sum_{n=1}^{\infty}\frac{a_{n}}{\left(n+1\right)4^{n}},$$

where

$$a_{n}:=\sum_{k=1}^{n}\binom{2n}{n-k}\frac{1+(-1)^{k+1}}{k^{2}};~~~\small{n\in\mathbb{N}}.$$

We first show that the series can be reduced to an integral as

$$\mathcal{S}=\frac43\zeta{\left(2\right)}+4\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(1-x+x^{2}\right)}}{1+x^{2}}.$$

We then evaluate the integral using Feynman's trick to obtain the conjectured value of $\mathcal{S}$.


Consider the following basic integration formula

$$\int_{0}^{y}\mathrm{d}z\,z^{k-1}=\frac{y^{k}}{k};~~~\small{k\in\mathbb{N}\land y\in\mathbb{R}}.$$

It follows that

$$\frac{x^{k}}{k^{2}}=\int_{0}^{x}\mathrm{d}y\int_{0}^{y}\mathrm{d}z\,\frac{z^{k}}{yz};~~~\small{k\in\mathbb{N}\land x\in\mathbb{R}}.$$

For each $n\in\mathbb{N}$, we can then express $a_{n}$ as a double integral as follows:

$$\begin{align} a_{n} &=\sum_{k=1}^{n}\binom{2n}{n-k}\frac{1+(-1)^{k+1}}{k^{2}}\\ &=\sum_{k=1}^{n}\binom{2n}{n-k}\left[1+(-1)^{k+1}\right]\int_{0}^{1}\mathrm{d}y\int_{0}^{y}\mathrm{d}z\,\frac{z^{k}}{yz}\\ &=\int_{0}^{1}\mathrm{d}y\int_{0}^{y}\mathrm{d}z\,\sum_{k=1}^{n}\binom{2n}{n-k}\left[1+(-1)^{k+1}\right]y^{-1}z^{k-1}\\ &=\int_{0}^{1}\mathrm{d}y\int_{0}^{y}\mathrm{d}z\,y^{-1}\sum_{k=1}^{n}\binom{2n}{n-k}\left[z^{k-1}+\left(-z\right)^{k-1}\right]\\ &=\int_{0}^{1}\mathrm{d}y\int_{0}^{y}\mathrm{d}z\,y^{-1}\left[\sum_{k=1}^{n}\binom{2n}{n-k}z^{k-1}+\sum_{k=1}^{n}\binom{2n}{n-k}\left(-z\right)^{k-1}\right].\\ \end{align}$$


Recall the basic definition of the Gauss hypergeometric function ${_2F_1}$ for real parameters $(a,b,c)\in\mathbb{R}^{3}\land c\notin\mathbb{Z}_{\le0}$ and complex argument $z\in\mathbb{C}\land|z|\le1$ by the power series

$${_2F_1}{\left(a,b;c;z\right)}:=\sum_{n=0}^{\infty}\frac{\left(a\right)_{n}\,\left(b\right)_{n}\,z^{n}}{\left(c\right)_{n}\,n!};~~~\small{|z|<1\lor\left(|z|=1\land c-a-b>0\right)},$$

where the Pochhammer symbol $\left(r\right)_{n}$ is defined for $r\in\mathbb{R}$ and $n\in\mathbb{Z}_{\ge0}$ by

$$\left(r\right)_{n}= \begin{cases} 1;&n=0,\\ \prod_{k=1}^{n}\left(r+k-1\right);&n>0.\\ \end{cases}$$

The series terminates if $a$ is a nonpositive integer, in which case the Gauss hypergeometric function reduces to a polynomial:

$${_2F_1}{\left(-m,b;c;z\right)}:=\sum_{n=0}^{m}\left(-1\right)^{n}\binom{m}{n}\frac{\left(b\right)_{n}\,z^{n}}{\left(c\right)_{n}};~~~\small{m\in\mathbb{Z}_{\ge0}}.$$

For $(a,b,c)\in\mathbb{R}^{3}\land0<b<c$ and $z\in\mathbb{C}\setminus(1,\infty)$, the Gauss hypergeometric function can be expressed as an integral through Euler's integration formula:

$$\int_{0}^{1}\mathrm{d}t\,\frac{t^{b-1}\left(1-t\right)^{c-b-1}}{\left(1-zt\right)^{a}}=\operatorname{B}{\left(b,c-b\right)}\,{_2F_1}{\left(a,b;c;z\right)};~~~\small{z\neq1\lor\left(z=1\land c-a-b>0\right)}.$$

Using the machinery of hypergeometric functions, we can then show that for $n\in\mathbb{N}\land z\in\mathbb{C}\land|z|\le1$,

$$\begin{align} \sum_{k=1}^{n}\binom{2n}{n-k}z^{k-1} &=\sum_{k=1}^{n}\frac{(2n)!}{(n-k)!\,(n+k)!}\,z^{k-1}\\ &=\frac{(2n)!}{(n-1)!\,(n+1)!}\sum_{k=1}^{n}\frac{(n-1)!}{(k-1)!\,(n-k)!}\cdot\frac{(n+1)!\,(k-1)!\,z^{k-1}}{(n+k)!}\\ &=\binom{2n}{n-1}\sum_{k=1}^{n}\binom{n-1}{k-1}\frac{\left(1\right)_{k-1}\,z^{k-1}}{\left(n+2\right)_{k-1}}\\ &=\binom{2n}{n-1}\sum_{k=0}^{n-1}\binom{n-1}{k}\frac{\left(1\right)_{k}\,z^{k}}{\left(n+2\right)_{k}}\\ &=\binom{2n}{n-1}\,{_2F_1}{\left(1-n,1;n+2;-z\right)}\\ &=\left(n+1\right)\binom{2n}{n-1}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\left(1+zt\right)^{n-1}\\ &=n\binom{2n}{n}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\left(1+zt\right)^{n-1}.\\ \end{align}$$


For $n\in\mathbb{N}$, we can then write $a_{n}$ as

$$\begin{align} a_{n} &=\int_{0}^{1}\mathrm{d}y\int_{0}^{y}\mathrm{d}z\,y^{-1}\left[\sum_{k=1}^{n}\binom{2n}{n-k}z^{k-1}+\sum_{k=1}^{n}\binom{2n}{n-k}\left(-z\right)^{k-1}\right]\\ &=\int_{0}^{1}\mathrm{d}z\int_{z}^{1}\mathrm{d}y\,y^{-1}\left[\sum_{k=1}^{n}\binom{2n}{n-k}z^{k-1}+\sum_{k=1}^{n}\binom{2n}{n-k}\left(-z\right)^{k-1}\right]\\ &=\int_{0}^{1}\mathrm{d}z\,\left[-\ln{\left(z\right)}\right]\left[\sum_{k=1}^{n}\binom{2n}{n-k}z^{k-1}+\sum_{k=1}^{n}\binom{2n}{n-k}\left(-z\right)^{k-1}\right]\\ &=\int_{0}^{1}\mathrm{d}z\,\left[-\ln{\left(z\right)}\right]\\ &~~~~~\times\left[n\binom{2n}{n}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\left(1+zt\right)^{n-1}+n\binom{2n}{n}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\left(1-zt\right)^{n-1}\right]\\ &=n\binom{2n}{n}\int_{0}^{1}\mathrm{d}z\,\left[-\ln{\left(z\right)}\right]\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\left[\left(1+zt\right)^{n-1}+\left(1-zt\right)^{n-1}\right]\\ &=\binom{2n}{n}\int_{0}^{1}\mathrm{d}z\int_{0}^{1}\mathrm{d}t\,n\left(1-t\right)^{n}\left[\left(1+zt\right)^{n-1}+\left(1-zt\right)^{n-1}\right]\left[-\ln{\left(z\right)}\right]\\ &=\binom{2n}{n}\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}z\,n\left(1-t\right)^{n}\left[\left(1+zt\right)^{n-1}+\left(1-zt\right)^{n-1}\right]\left[-\ln{\left(z\right)}\right]\\ &=\binom{2n}{n}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\left[-n\int_{0}^{1}\mathrm{d}z\,\left(1+zt\right)^{n-1}\ln{\left(z\right)}-n\int_{0}^{1}\mathrm{d}z\,\left(1-zt\right)^{n-1}\ln{\left(z\right)}\right]\\ &=\binom{2n}{n}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\left[\int_{0}^{1}\mathrm{d}z\,\frac{\left(1+zt\right)^{n}-1}{zt}-\int_{0}^{1}\mathrm{d}z\,\frac{\left(1-zt\right)^{n}-1}{zt}\right];~~~\small{I.B.P.}\\ &=\binom{2n}{n}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\int_{0}^{1}\mathrm{d}z\,\frac{\left(1+zt\right)^{n}-\left(1-zt\right)^{n}}{zt}.\\ \end{align}$$


Define the auxiliary function $f{(x)}$ by the series

$$f{\left(x\right)}:=\sum_{n=1}^{\infty}\frac{\binom{2n}{n}\,x^{n}}{\left(n+1\right)4^{n}};~~~\small{|x|\le1}.$$

For $|x|\le1$, we find

$$\begin{align} x\left[1+f{\left(x\right)}\right] &=x\left[1+\sum_{n=1}^{\infty}\frac{\binom{2n}{n}\,x^{n}}{\left(n+1\right)4^{n}}\right]\\ &=x+x\sum_{n=1}^{\infty}\frac{\binom{2n}{n}\,x^{n}}{\left(n+1\right)4^{n}}\\ &=x\sum_{n=0}^{\infty}\frac{\binom{2n}{n}\,x^{n}}{\left(n+1\right)4^{n}}\\ &=\sum_{n=0}^{\infty}\frac{\binom{2n}{n}\,x^{n+1}}{\left(n+1\right)4^{n}}\\ &=\sum_{n=0}^{\infty}\frac{\binom{2n}{n}}{4^{n}}\int_{0}^{x}\mathrm{d}y\,y^{n}\\ &=\sum_{n=0}^{\infty}\frac{1}{\pi}\operatorname{B}{\left(n+\frac12,\frac12\right)}\int_{0}^{x}\mathrm{d}y\,y^{n}\\ &=\frac{1}{\pi}\int_{0}^{x}\mathrm{d}y\,\sum_{n=0}^{\infty}y^{n}\operatorname{B}{\left(n+\frac12,\frac12\right)}\\ &=\frac{1}{\pi}\int_{0}^{x}\mathrm{d}y\,\sum_{n=0}^{\infty}y^{n}\int_{0}^{1}\mathrm{d}u\,u^{n-1/2}\left(1-u\right)^{-1/2}\\ &=\frac{1}{\pi}\int_{0}^{x}\mathrm{d}y\,\sum_{n=0}^{\infty}y^{n}\int_{0}^{1}\mathrm{d}u\,\frac{u^{n}}{\sqrt{u\left(1-u\right)}}\\ &=\frac{1}{\pi}\int_{0}^{x}\mathrm{d}y\int_{0}^{1}\mathrm{d}u\,\sum_{n=0}^{\infty}\frac{y^{n}u^{n}}{\sqrt{u\left(1-u\right)}}\\ &=\frac{1}{\pi}\int_{0}^{x}\mathrm{d}y\int_{0}^{1}\mathrm{d}u\,\frac{1}{\left(1-yu\right)\sqrt{u\left(1-u\right)}}\\ &=\int_{0}^{x}\mathrm{d}y\,\frac{1}{\sqrt{1-y}}\\ &=2-2\sqrt{1-x},\\ \end{align}$$

$$\implies f{\left(x\right)}=\frac{\left(1-\sqrt{1-x}\right)^{2}}{x}=\frac{1-\sqrt{1-x}}{1+\sqrt{1-x}}.$$

We can then write $\mathcal{S}$ as a double integral in the following way:

$$\begin{align} \mathcal{S} &=\sum_{n=1}^{\infty}\frac{a_{n}}{\left(n+1\right)4^{n}}\\ &=\sum_{n=1}^{\infty}\frac{\binom{2n}{n}}{\left(n+1\right)4^{n}}\int_{0}^{1}\mathrm{d}t\,\left(1-t\right)^{n}\int_{0}^{1}\mathrm{d}z\,\frac{\left(1+zt\right)^{n}-\left(1-zt\right)^{n}}{zt}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}z\,\sum_{n=1}^{\infty}\frac{\binom{2n}{n}}{\left(n+1\right)4^{n}}\cdot\frac{\left(1-t\right)^{n}\left(1+zt\right)^{n}-\left(1-t\right)^{n}\left(1-zt\right)^{n}}{zt}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}z\,\frac{f{\left(\left(1-t\right)\left(1+zt\right)\right)}-f{\left(\left(1-t\right)\left(1-zt\right)\right)}}{zt}\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}z\,\frac{1}{zt}\left[\frac{1-\sqrt{1-\left(1-t\right)\left(1+zt\right)}}{1+\sqrt{1-\left(1-t\right)\left(1+zt\right)}}-\frac{1-\sqrt{1-\left(1-t\right)\left(1-zt\right)}}{1+\sqrt{1-\left(1-t\right)\left(1-zt\right)}}\right].\\ \end{align}$$

We can further reduce $\mathcal{S}$ to a single-variable integral as follows:

$$\begin{align} \mathcal{S} &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}z\,\frac{1}{zt}\left[\frac{1-\sqrt{1-\left(1-t\right)\left(1+zt\right)}}{1+\sqrt{1-\left(1-t\right)\left(1+zt\right)}}-\frac{1-\sqrt{1-\left(1-t\right)\left(1-zt\right)}}{1+\sqrt{1-\left(1-t\right)\left(1-zt\right)}}\right]\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}z\,\frac{1}{tz}\left[\frac{1-\sqrt{t\left(1-\left(1-t\right)z\right)}}{1+\sqrt{t\left(1-\left(1-t\right)z\right)}}-\frac{1-\sqrt{t\left(1+\left(1-t\right)z\right)}}{1+\sqrt{t\left(1+\left(1-t\right)z\right)}}\right]\\ &=\int_{0}^{1}\mathrm{d}t\int_{0}^{1-t}\mathrm{d}y\,\frac{1}{ty}\left[\frac{1-\sqrt{t\left(1-y\right)}}{1+\sqrt{t\left(1-y\right)}}-\frac{1-\sqrt{t\left(1+y\right)}}{1+\sqrt{t\left(1+y\right)}}\right];~~~\small{\left[\left(1-t\right)z=y\right]}\\ &=\int_{0}^{1}\mathrm{d}y\int_{0}^{1-y}\mathrm{d}t\,\frac{1}{yt}\left[\frac{1-\sqrt{t\left(1-y\right)}}{1+\sqrt{t\left(1-y\right)}}-\frac{1-\sqrt{t\left(1+y\right)}}{1+\sqrt{t\left(1+y\right)}}\right]\\ &=\int_{0}^{1}\mathrm{d}y\int_{0}^{\sqrt{1-y}}\mathrm{d}u\,\frac{2}{yu}\left[\frac{1-u\sqrt{1-y}}{1+u\sqrt{1-y}}-\frac{1-u\sqrt{1+y}}{1+u\sqrt{1+y}}\right];~~~\small{\left[\sqrt{t}=u\right]}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{4}{y}\int_{0}^{\sqrt{1-y}}\mathrm{d}u\,\frac{1}{2u}\left[\frac{1-u\sqrt{1-y}}{1+u\sqrt{1-y}}-\frac{1-u\sqrt{1+y}}{1+u\sqrt{1+y}}\right]\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{4}{y}\int_{0}^{\sqrt{1-y}}\mathrm{d}u\,\left[\frac{\sqrt{1+y}}{1+u\sqrt{1+y}}-\frac{\sqrt{1-y}}{1+u\sqrt{1-y}}\right]\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{4}{y}\int_{0}^{\sqrt{1-y}}\mathrm{d}u\,\frac{d}{du}\ln{\left(\frac{1+u\sqrt{1+y}}{1+u\sqrt{1-y}}\right)}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{4}{y}\ln{\left(\frac{1+\sqrt{1-y^{2}}}{2-y}\right)}.\\ \end{align}$$

Then,

$$\begin{align} \mathcal{S} &=\int_{0}^{1}\mathrm{d}y\,\frac{4}{y}\ln{\left(\frac{1+\sqrt{1-y^{2}}}{2-y}\right)}\\ &=\int_{0}^{1}\mathrm{d}y\,\frac{4}{y}\ln{\left(\frac{1+\left(1+y\right)\sqrt{\frac{1-y}{1+y}}}{2-y}\right)}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{2}{\left(1+t\right)^{2}}\cdot\frac{4}{\left(\frac{1-t}{1+t}\right)}\ln{\left(\frac{1+\left(\frac{2}{1+t}\right)\sqrt{t}}{2-\left(\frac{1-t}{1+t}\right)}\right)};~~~\small{\left[y=\frac{1-t}{1+t}\right]}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{8}{1-t^{2}}\ln{\left(\frac{(1+t)+2\sqrt{t}}{2(1+t)-\left(1-t\right)}\right)}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{8}{1-t^{2}}\ln{\left(\frac{1+t+2\sqrt{t}}{1+3t}\right)}\\ &=\int_{0}^{1}\mathrm{d}u\,\frac{16u}{1-u^{4}}\ln{\left(\frac{1+2u+u^{2}}{1+3u^{2}}\right)};~~~\small{\left[\sqrt{t}=u\right]}\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{2}{\left(1+x\right)^{2}}\cdot\frac{2\left(\frac{1-x}{1+x}\right)\left(1+x\right)^{4}}{x\left(1+x^{2}\right)}\ln{\left(\frac{1}{1-x+x^{2}}\right)};~~~\small{\left[u=\frac{1-x}{1+x}\right]}\\ &=\int_{0}^{1}\mathrm{d}x\,\frac{4\left(1-x^{2}\right)}{x\left(1+x^{2}\right)}\ln{\left(\frac{1}{1-x+x^{2}}\right)}\\ &=4\int_{0}^{1}\mathrm{d}x\,\left[\frac{1}{x}-\frac{2x}{1+x^{2}}\right]\ln{\left(\frac{1}{1-x+x^{2}}\right)}\\ &=4\int_{0}^{1}\mathrm{d}x\,\frac{1}{x}\ln{\left(\frac{1}{1-x+x^{2}}\right)}-4\int_{0}^{1}\mathrm{d}x\,\frac{2x}{1+x^{2}}\ln{\left(\frac{1}{1-x+x^{2}}\right)}\\ &=4\int_{0}^{1}\mathrm{d}x\,\frac{1}{x}\ln{\left(\frac{1+x}{1+x^{3}}\right)}+4\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(1-x+x^{2}\right)}}{1+x^{2}}\\ &=4\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x\right)}}{x}-4\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x^{3}\right)}}{x}+4\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(1-x+x^{2}\right)}}{1+x^{2}}\\ &=4\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x\right)}}{x}-4\int_{0}^{1}\mathrm{d}u\,\frac{\ln{\left(1+u\right)}}{3u};~~~\small{\left[x^{3}=u\right]}\\ &~~~~~+4\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(1-x+x^{2}\right)}}{1+x^{2}}\\ &=\frac83\int_{0}^{1}\mathrm{d}x\,\frac{\ln{\left(1+x\right)}}{x}+4\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(1-x+x^{2}\right)}}{1+x^{2}}\\ &=\frac43\zeta{\left(2\right)}+4\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(1-x+x^{2}\right)}}{1+x^{2}}.\\ \end{align}$$


The integral we need can be evaluated using Feynman's method of differentiating under the integral sign.

Define the function $\mathcal{I}:\mathbb{R}\rightarrow\mathbb{R}$ via the definite integral

$$\mathcal{I}{\left(\alpha\right)}:=\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(x^{2}-2x\cos{\left(\alpha\right)}+1\right)}}{x^{2}+1}.$$

By the fundamental theorem of calculus, we have

$$\mathcal{I}{\left(\alpha\right)}-\mathcal{I}{\left(\frac{\pi}{2}\right)}=\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\mathcal{I}^{\prime}{\left(\varphi\right)};~~~\small{0<\alpha<\pi}.$$

Note that

$$\mathcal{I}{\left(\frac{\pi}{2}\right)}=\frac12\ln^{2}{\left(2\right)}.$$

For $\alpha\in(0,\pi)\land\alpha\neq\frac{\pi}{2}$, we find

$$\begin{align} \mathcal{I}{\left(\alpha\right)} &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\mathcal{I}^{\prime}{\left(\varphi\right)}\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\frac{d}{d\varphi}\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(x^{2}-2x\cos{\left(\varphi\right)}+1\right)}}{x^{2}+1}\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\int_{0}^{1}\mathrm{d}x\,\frac{\partial}{\partial\varphi}\frac{2x\ln{\left(x^{2}-2x\cos{\left(\varphi\right)}+1\right)}}{x^{2}+1}\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\int_{0}^{1}\mathrm{d}x\,\frac{4x^{2}\sin{\left(\varphi\right)}}{\left(x^{2}+1\right)\left[x^{2}-2x\cos{\left(\varphi\right)}+1\right]}\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\int_{0}^{1}\mathrm{d}x\,\tan{\left(\varphi\right)}\left[\frac{2x}{x^{2}-2x\cos{\left(\varphi\right)}+1}-\frac{2x}{x^{2}+1}\right]\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\tan{\left(\varphi\right)}\int_{0}^{1}\mathrm{d}x\,\left[\frac{2x-2\cos{\left(\varphi\right)}}{x^{2}-2x\cos{\left(\varphi\right)}+1}-\frac{2x}{x^{2}+1}+\frac{2\cos{\left(\varphi\right)}}{x^{2}-2x\cos{\left(\varphi\right)}+1}\right]\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\tan{\left(\varphi\right)}\left[\ln{\left(1-\cos{\left(\alpha\right)}\right)}+\int_{0}^{1}\mathrm{d}x\,\frac{2\cos{\left(\varphi\right)}}{x^{2}-2x\cos{\left(\varphi\right)}+1}\right]\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\left[\tan{\left(\varphi\right)}\ln{\left(1-\cos{\left(\alpha\right)}\right)}+\int_{0}^{1}\mathrm{d}x\,\frac{2\sin{\left(\varphi\right)}}{x^{2}-2x\cos{\left(\varphi\right)}+1}\right]\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\left[\tan{\left(\varphi\right)}\ln{\left(1-\cos{\left(\alpha\right)}\right)}+\left(\pi-\varphi\right)\right]\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\left[\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\left(\pi-\varphi\right)+\int_{\frac{\pi}{2}}^{\alpha}\mathrm{d}\varphi\,\tan{\left(\varphi\right)}\ln{\left(1-\cos{\left(\alpha\right)}\right)}\right]\\ &=\mathcal{I}{\left(\frac{\pi}{2}\right)}+\left[\frac{\pi^{2}}{8}-\frac12\left(\pi-\alpha\right)^{2}+\operatorname{Li}_{2}{\left(\cos{\left(\alpha\right)}\right)}\right]\\ &=\frac12\ln^{2}{\left(2\right)}+\frac{\pi^{2}}{8}-\frac12\left(\pi-\alpha\right)^{2}+\operatorname{Li}_{2}{\left(\cos{\left(\alpha\right)}\right)}.\\ \end{align}$$

In particular, we can use the special value of the dilogarithm at $\frac12$ to obtain the value of $\mathcal{I}$ at $\frac{\pi}{3}$:

$$\mathcal{I}{\left(\frac{\pi}{3}\right)}=\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(x^{2}-x+1\right)}}{x^{2}+1}=-\frac{\pi^{2}}{72}=-\frac{1}{12}\zeta{\left(2\right)}.$$


Hence,

$$\mathcal{S}=\frac43\zeta{\left(2\right)}+4\int_{0}^{1}\mathrm{d}x\,\frac{2x\ln{\left(1-x+x^{2}\right)}}{1+x^{2}}=\zeta{\left(2\right)}.\blacksquare$$