Closed form of $\int_0^\pi \ln\left(1+\sin^2(t)\right) dt$

closed-formdefinite integralsintegrationlogarithms

I attempted to evaluate this integral but seem to be getting nowhere$$I=\int_0^\pi \ln\left(1+\sin^2(t)\right) dt$$

Wolfram returns the value $I\approx 1.18266$ but was not able to provide a closed form for me. I suspect that one could exist but I'm not sure how to proceed. Any help will be appreciated.

Best Answer

Here is a different way to set up that a parameter in order to apply Feynman's trick.$$I=2\int_0^\frac{\pi}{2} \ln\left(1+\sin^2t\right) dt\overset{t=\operatorname{arccot} x}=2\int_0^\infty \frac{\ln(2+x^2)-\ln(1+x^2)}{1+x^2}dx$$ Now let us consider $$I(a)=\int_0^\infty \frac{\ln(a+x^2)-\ln(1+x^2)}{1+x^2}dx\Rightarrow I'(a)=\int_0^\infty \frac{1}{(1+x^2)(a+x^2)}dx$$ $$=\frac{1}{a-1}\left(\int_0^\infty \frac{1}{x^2+1}dx-\int_0^\infty \frac{1}{x^2+a}dx\right)=\frac{1}{a-1}\left(\frac{\pi}{2}-\frac{1}{\sqrt a}\cdot \frac{\pi}{2}\right)=\frac{\pi}{2}\frac{1}{\sqrt a(1+\sqrt a)}$$ We are looking to find $I=2I(2)$, but since $I(1)=0$ we have: $$I=2\left(I(2)-I(1)\right)=2\int_1^2 I'(a)da=\pi \int_1^2 \frac{1}{\sqrt a(1+\sqrt a)}da$$ $$\overset {\large a=x^2}=2\pi\int_1^\sqrt 2 \frac{1}{1+x}dx=2\pi \ln(1+x)\bigg|_1^\sqrt 2=2\pi \ln\frac{1+\sqrt 2}{2}$$