Closed form for $\int \limits _{1}^{\infty} \dfrac{1}{x-1} \cdot \dfrac{x^{\frac{1}{n}}-x^{\frac{-1}{n}}}{x^n} \mathrm{dx} \ \ ,\ \ n \in \mathbb{N} $

calculusimproper-integralsintegrationsequences-and-series

I have to find the closed form of

$\displaystyle \tag*{} \int \limits _{1}^{\infty} \dfrac{1}{x-1} \cdot \dfrac{x^{\frac{1}{n}}-x^{\frac{-1}{n}}}{x^n} \mathrm{dx} \ \ ,\ \ n \in \mathbb{N} $

I tried to express the integral in the form of $I_n (a)$ to do differentiation under integral. No matter where I place the $a$, the derivative becomes very complicated and hence difficult to solve. Please give me some hints or let me know whether there any other methods to solve. Thanks.

Best Answer

Substituting $x=e^t$ gives the following: $$\begin{align}I_n&=\int_1^{\infty} \frac{1}{x-1}\frac{x^{1/n}-x^{-1/n}}{x^n}~dx\\&=\int_0^{\infty} \frac{e^{t/n}-e^{-t/n}}{e^{tn}(e^t-1)}\cdot e^t~dt\\&=\int_0^{\infty} \frac{e^{-t(n-1/n)}-e^{-t(n+1/n)}}{1-e^{-t}}~dt. \end{align}$$ Now compare with integral representation for the digamma function (due to Gauss) $$\psi(z)=\int_0^{\infty} \left(\frac{e^{-t}}{t}-\frac{e^{-zt}}{1-e^{-t}}\right)~dt$$ to obtain the same result as provided by @MariuszIwaniuk $$I_n=\psi\left(n+\frac{1}{n}\right)-\psi\left(n-\frac{1}{n}\right).$$ Since $n$ is an integer with $n>1$ (the integral doesn't converge for $n=1$), one can simplify the above result to a form without non-elementary functions. To do so, note that by using the recurrence for the digamma function $\psi(z+1)=\psi(z)+1/z$, one obtains inductively $$\psi\left(n+\frac{1}{n}\right)=\psi\left(\frac{1}{n}\right)+\sum_{k=0}^{n-1} \frac{1}{k+1/n},$$ $$\psi\left(n-\frac{1}{n}\right)=\psi\left(1-\frac{1}{n}\right)+n+\sum_{k=0}^{n-1} \frac{1}{k-1/n}.$$ Therefore, one has the following closed form $$\begin{align} I_n&=\psi\left(\frac{1}{n}\right)-\psi\left(1-\frac{1}{n}\right)-n+\sum_{k=0}^{n-1} \left(\frac{1}{k+1/n}-\frac{1}{k-1/n}\right)\\&=-\pi\cot(\pi/n)-n+\sum_{k=0}^{n-1} \frac{2n}{1-k^2 n^2}\\&=\left[n+\sum_{k=1}^{n-1} \frac{2n}{1-k^2 n^2}\right]-\pi\cot(\pi/n), \end{align}$$ where we have used the reflection formula $\psi(1-z)+\psi(z)=\pi\cot(\pi z)$.