Chebyshev polynomials to hypergeometric function

binomial-coefficientschebyshev polynomialshypergeometric functionsummation

I am trying to derive this hypergeometric version of the Chebyshev polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials#Explicit_expressions

$$U_n(x) = \frac{\left (x+\sqrt{x^2-1} \right )^{n+1} – \left (x-\sqrt{x^2-1} \right )^{n+1}}{2\sqrt{x^2-1}} $$

$$ = \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \binom{n+1}{2k+1} \left (x^2-1 \right )^k x^{n-2k} $$

$$ = x^n \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \binom{n+1}{2k+1} \left (1 – x^{-2} \right )^k $$

$$ = \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \binom{2k-(n+1)}{k}~(2x)^{n-2k} \text{ for }~ n > 0$$

$$ = \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} (-1)^k \binom{n-k}{k}~(2x)^{n-2k} \text{ for }~ n > 0 $$

$$ = \sum_{k=0}^{n}(-2)^{k} \frac{(n+k+1)!} {(n-k)!(2k+1)!}(1 – x)^k \text{ for }~ n > 0$$

$$ = (n+1) \ {}_2F_1\left(-n,n+2; \tfrac{3}{2}; \tfrac{1}{2}(1-x) \right) $$

How do you go from the floor function summation part to the hypergeometric part? Which binomial identities are used? How do you go from $(2x)^{n-2k}$ to $(1-x)^{k}$?

Best Answer

We show the following identity is valid for $n\geq 0$: \begin{align*} \color{blue}{\sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} (-1)^k \binom{n-k}{k}~(2x)^{n-2k} =\sum_{k=0}^{n}(-2)^{k}\binom{n+k+1}{2k+1}(1 - x)^k }\tag{1} \end{align*}

The bivariate generating function of the Chebyshev polynomials of the second kind is \begin{align*} \color{blue}{u(x,y)=\frac{1}{1-2xy+y^2}=\sum_{n=0}^{\infty}U_n(x)y^n} \end{align*} In the following we consider the generating function $\pi(x,y)$ \begin{align*} \pi(x,y)=\frac{1}{1-(2+x)y+y^2}=\frac{1}{(1-y)^2-xy}\tag{2} \end{align*} which is related with $u(x,y)$ by a transformation $x\to 2x-2$: \begin{align*} \color{blue}{\pi(2x-2,y)=u(x,y)} \end{align*}

Expanding the left-hand expression of $\pi(x,y)$ we obtain \begin{align*} \color{blue}{\pi(x,y)}&\color{blue}{=\frac{1}{1-(2+x)y+y^2}}\\ &=\sum_{n=0}^{\infty}\left((2+x)y-y^2\right)^n\tag{3.1}\\ &=\sum_{n=0}^{\infty}\left(\sum_{k=0}^n\binom{n}{k}(2+x)^k(-1)^{n-k}y^{n-k}\right)y^n\tag{3.2}\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^n\binom{n}{k}(2+x)^{n-k}(-1)^ky^{n+k}\tag{3.3}\\ &=\sum_{k=0}^{\infty}\sum_{n=k}^{\infty}\binom{n}{k}(2+x)^{n-k}(-1)^ky^{n+k}\tag{3.4}\\ &=\sum_{k=0}^{\infty}\sum_{n=2k}^{\infty}\binom{n-k}{k}(2+x)^{n-2k}(-1)^ky^n\tag{3.5}\\ &\,\,\color{blue}{=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \binom{n-k}{k}(2+x)^{n-2k}(-1)^k\right)y^n}\tag{3.6} \end{align*}

Comment:

  • In (3.1) we use a geometric series expansion.

  • In (3.2) we apply the binomial theorem.

  • In (3.3) we change the order of the inner sum $k\to n-k$.

  • In (3.4) we exchange the order of the sums.

  • In (3.5) we shift the index $n$ by $k$ to change $y^{n-k}\to y^n$.

  • In (3.6) we shift again the order of the sums.

Expanding the right-hand expression of $\pi(x,y)$ we obtain \begin{align*} \color{blue}{\pi(x,y)}&\color{blue}{=\frac{1}{(1-y)^2-xy}} =\frac{1}{(1-y)^2}\,\frac{1}{1-\frac{xy}{(1-y)^2}}\\ &=\frac{1}{(1-y)^2}\sum_{n=0}^{\infty}\frac{(xy)^n}{(1-y)^{2n}}\tag{4.1}\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\binom{-2n-2}{k}(-y)^k(xy)^n\tag{4.2}\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\binom{2n+k+1}{k}x^ny^{n+k}\tag{4.3}\\ &=\sum_{n=0}^{\infty}\sum_{n=k}^{\infty}\binom{2n-k+1}{k}x^{n-k}y^n\tag{4.4}\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^n\binom{2n-k+1}{k}x^{n-k}y^n\tag{4.5}\\ &=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n+k+1}{n-k}x^k\right)y^n\tag{4.6}\\ &\,\,\color{blue}{=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n+k+1}{2k+1}x^k\right)y^n}\tag{4.7}\\ \end{align*} It follows from (3.6) and (4.6) by comparing the coefficients of $y^n$ \begin{align*} \color{blue}{\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \binom{n-k}{k}(2+x)^{n-2k}(-1)^k=\sum_{k=0}^{n}\binom{n+k+1}{2k+1}x^k} \end{align*} Replacing $x$ by $2x-2$ and the claim (1) follows.

Comment:

  • In (4.1) we use a geometric series expansion.

  • In (4.2) we use a binomial series expansion.

  • In (4.3) we use the binomial identity $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^q$.

  • In (4.4) we exchange the order of the sums and we shift the index $n$ by $k$ to change $y^{n-k}\to y^n$.

  • In (4.5) we exchange the order of the sums.

  • In (4.6) we change the order of the inner sum $k\to n-k$.

  • In (4.7) we use the binomial identity $\binom{p}{q}=\binom{p}{p-q}$.

Note: This answer is a solution to chapter 2, problem 18.c in Combinatorial Identities by John Riordan.

Related Question