Chapter 2.4 Exercise 1 in Do Carmo (Tangent Plane)

differential-geometrysurfaces

Show that the equation of the tangent plane at $p=(x_0,y_0,z_0)$ of a regular surface is given by $f(x,y,z)=0$ where $0$ is a regular value of $f$, is
$$f_x(p)(x-x_0)+f_y(p)(y-y_0)+f_z(p)(z-z_0)$$

Best Answer

Let $S=\{(x,y,z)\in\mathbb{R}^3; f(x,y,z)=0\}$, and $p_0\in S$. Now, there exist a curve $\alpha:(-\epsilon,\epsilon)\to S$, such that $\alpha(0)=p_0$ and $\alpha'(0)=w\in T_{p_0}S$, with $w=p-p_0$. Note that $$(f\circ\alpha)(t)=f(x(t),y(t),z(t))=0\implies df_{p_0}(w)=0$$ So the inner product of an element of $S$ and any element of $T_{p_0}S$ is $0$, i.e., $$\langle(f_{x}(p_0),f_{y}(p_0),f_{z}(p_0)),w\rangle=\langle(f_{x}(p_0),f_{y}(p_0),f_{z}(p_0)),p-p_0\rangle=0$$

Where $p=(x,y,z)\in T_{p_0}S$ and $p_0=(x_0,y_0,z_0)\in S$.