Challenging integral $I=\int_0^{\pi/2}x^2\frac{\ln(\sin x)}{\cos x}dx$

closed-formdefinite integralsintegrationpolylogarithmspecial functions

My friend offered to solve this integral.

$$I=\int_0^{\pi/2}x^2\frac{\ln(\sin x)}{\cos x}dx=\frac{\pi^4}{32}-{4G^2} $$
Where G is the Catalan's constant.

$$I=\int _0^{\infty }\frac{\arctan ^2\left(u\right)\ln \left(\frac{u}{\sqrt{1+u^2}}\right)}{\sqrt{1+u^2}}\:du\;.$$
Put $$\tan{x}=u$$
Inability to split into two integrals, they are divergent.

Best Answer

A possible way to calculate it is starting with $x=\frac{\pi }{2}-t$, we then get $$\int _0^{\frac{\pi }{2}}x^2\sec \left(x\right)\ln \left(\sin \left(x\right)\right)\:dx=\frac{\pi ^2}{4}\int _0^{\frac{\pi }{2}}\csc \left(x\right)\ln \left(\cos \left(x\right)\right)\:dx$$ $$-\pi \int _0^{\frac{\pi }{2}}x\csc \left(x\right)\ln \left(\cos \left(x\right)\right)\:dx+\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\ln \left(\cos \left(x\right)\right)\:dx.\tag1$$ Notice that the first integral is very simple, as for the second one, it won't be necessary to calculate it if we focus on the third integral.

Employing the well-known expansion for $\ln \left(\cos \left(x\right)\right)$ leads to $$\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\ln \left(\cos \left(x\right)\right)\:dx$$ $$=-\ln \left(2\right)\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\:dx-\sum _{k=1}^{\infty }\frac{\left(-1\right)^k}{k}\underbrace{\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\cos \left(2kx\right)\:dx}_{I_k},\tag2$$ so in order to simplify $I_k$ we'll use the following strategy $$\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\cos \left(2kx\right)\:dx=\int _0^{\frac{\pi }{2}}x^2\frac{\cos \left(2kx\right)}{\sin \left(x\right)}\:dx$$ $$I_k=\int _0^{\frac{\pi }{2}}x^2\frac{\cos \left(2kx\right)}{\sin \left(x\right)}\:dx$$ $$I_{n+1}-I_n=\int _0^{\frac{\pi }{2}}x^2\frac{\cos \left(2\left(n+1\right)x\right)-\cos \left(2nx\right)}{\sin \left(x\right)}\:dx=-2\int _0^{\frac{\pi }{2}}x^2\sin \left(\left(2n+1\right)x\right)\:dx$$ $$=-\frac{2\pi \left(2n+1\right)\left(-1\right)^n-4}{\left(2n+1\right)^3}$$ $$I_k-I_0=-\sum _{n=0}^{k-1}\frac{2\pi \left(2n+1\right)\left(-1\right)^n-4}{\left(2n+1\right)^3}$$ $$\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\cos \left(2kx\right)\:dx=-2\pi \sum _{n=1}^k\frac{\left(-1\right)^{n+1}}{\left(2n-1\right)^2}+4\sum _{n=1}^k\frac{1}{\left(2n-1\right)^3}+\int _0^{\frac{\pi }{2}}x^2\csc \left(x\right)\:dx.$$ Replacing this in $\left(2\right)$ yields $$=2\pi \sum _{k=1}^{\infty }\frac{\left(-1\right)^k}{k}\sum _{n=1}^k\frac{\left(-1\right)^{n+1}}{\left(2n-1\right)^2}-4\sum _{k=1}^{\infty }\frac{\left(-1\right)^k}{k}\sum _{n=1}^k\frac{1}{\left(2n-1\right)^3}$$ $$=-2\pi \int _0^1\left(\sum _{k=1}^{\infty }\frac{\left(-1\right)^k}{k}\left(1-\left(-x^2\right)^k\right)\right)\frac{\ln \left(x\right)}{1+x^2}\:dx$$ $$-2\int _0^1\left(\sum _{k=1}^{\infty }\frac{\left(-1\right)^k}{k}\left(1-x^{2k}\right)\right)\frac{\ln ^2\left(x\right)}{1-x^2}\:dx$$ $$=-2\pi \int _0^1\frac{\ln \left(x\right)\ln \left(\frac{1-x^2}{2}\right)}{1+x^2}\:dx-2\int _0^1\frac{\ln ^2\left(x\right)\ln \left(\frac{1+x^2}{2}\right)}{1-x^2}\:dx.$$ Lastly, notice that $$-2\int _0^1\frac{\ln \left(x\right)\ln \left(\frac{1-x^2}{2}\right)}{1+x^2}\:dx=\int _0^{\frac{\pi }{2}}x\csc \left(x\right)\ln \left(\cos \left(x\right)\right)\:dx$$ $$\int _0^1\frac{\ln ^2\left(x\right)\ln \left(\frac{1+x^2}{2}\right)}{1-x^2}\:dx=2G^2-\frac{45}{16}\zeta \left(4\right),$$ where in order to obtain such closed-form one can trivially reduce it to the derivatives of the Beta function or exploit symmetry with double integration.

Now that we know what $\left(2\right)$ transformed to, $\left(1\right)$ becomes $$\int _0^{\frac{\pi }{2}}x^2\sec \left(x\right)\ln \left(\sin \left(x\right)\right)\:dx$$ $$=\frac{\pi ^2}{4}\left(-\frac{\pi ^2}{8}\right)-\pi \int _0^{\frac{\pi }{2}}x\csc \left(x\right)\ln \left(\cos \left(x\right)\right)\:dx-2\pi \left(-\frac{1}{2}\int _0^{\frac{\pi }{2}}x\csc \left(x\right)\ln \left(\cos \left(x\right)\right)\:dx\right)$$ $$-2\left(2G^2-\frac{45}{16}\zeta \left(4\right)\right),$$ and finally $$\int _0^{\frac{\pi }{2}}x^2\sec \left(x\right)\ln \left(\sin \left(x\right)\right)\:dx=\frac{45}{16}\zeta \left(4\right)-4G^2.$$