Cauchy Principal Value of $\int_{-\infty}^\infty \frac{e^{ipx}}{x^4-1}\,\mathrm{d}x$

cauchy-principal-valuecontour-integration

I have to find the Cauchy Principal Value of
$$
\int_{-\infty}^{\infty}\frac{\mathrm{e}^{\mathrm{i}px}}{x^{4} – 1}\,\mathrm{d}x
$$

There are 4 simple poles at $x=1,-1,i,-i$ so I'm not sure what the best contour to use is because a $D$ shaped contour doesn't work as all the poles are on the axes.
I should add there are 2 cases to consider with $p>0$ and $p<0$

Best Answer

The Cauchy Principal Value of the integral of interest is given by

$$\begin{align} \text{PV}\left(\int_{-\infty}^\infty \frac{e^{ipx}}{x^4-1}\,dx\right)&=\lim_{\varepsilon\to 0^+}\left(\int_{-\infty}^{-1-\varepsilon} \frac{e^{ipx}}{x^4-1}\,dx\int_{-1+\varepsilon}^{1-\varepsilon} \frac{e^{ipx}}{x^4-1}\,dx\int_{1+\varepsilon}^\infty \frac{e^{ipx}}{x^4-1}\,dx\right) \end{align}$$

We shall analyze the case for which $p>0$.



METHODOLOGY $1$:

Now, take $R>1$. If we evaluate the contour integral $\displaystyle \oint_C \frac{e^{ipz}}{z^4-1}\,dz$ where the contour $C$ is comprised of $(i)$ the real line segments from $-R$ to $-1-\varepsilon$, $(ii)$ the semi-circular arc in the third quadrant centered at $-1$ with radius $\varepsilon$ from $-1-\varepsilon$ to $-1+\varepsilon$, $(iii)$ the straight line segment from $-1+\varepsilon$ to $1-\varepsilon$, $(iv)$ the semi-circular arc in the first quadrant centered at $1$ with radius $\varepsilon$ from $1-\varepsilon$ to $1+\varepsilon$, $(v)$ a straight line segment from $1+\varepsilon$ to $R$, and $(vi)$ a semicircular arc from $R$ to $-R$, then the Residue theorem guarantees that

$$\oint_C \frac{e^{ipz}}{z^4-1}\,dz=2\pi i \text{Res}\left(\frac{e^{ipz}}{z^4-1}\,dz, z=i\right)=-\frac{\pi}{2}e^{-p}$$

As $R\to \infty$ and $\varepsilon\to 0^+$, we see that

$$\lim_{R\to\infty\\\varepsilon\to 0^+}\oint_C \frac{e^{ipz}}{z^4-1}\,dz=\text{PV}\left(\int_{-\infty}^\infty \frac{e^{ipx}}{x^4-1}\,dx\right)+\frac\pi2\sin(p)$$

Putting it together, we find that

$$\text{PV}\left(\int_{-\infty}^\infty \frac{e^{ipx}}{x^4-1}\,dx\right)=-\frac\pi2\left(\sin(p)+e^{-p}\right)$$



METHODOLOGY $2$:

Using partial fraction expansion, we can write

$$\frac{e^{ipx}}{x^4-1}=\frac{e^{ip}}4 \frac{e^{ip(x-1)}}{x-1}-\frac{e^{-ip}}4 \frac{e^{ip(x+1)}}{x+1}+\frac{ie^{-p}}4 \frac{e^{ip(x-i)}}{x-i}-\frac{ie^{p}}4 \frac{e^{ip(x+i)}}{x+i}$$

Then, we have

$$\begin{align} \text{PV}\left(\int_{-\infty}^\infty \frac{e^{ipx}}{x^4-1}\,dx\right)&=\frac{e^{ip}}4 \text{PV}\left(\int_{-\infty}^\infty \frac{e^{ip(x-1)}}{x-1}\,dx\right)\\\\ &-\frac{e^{-ip}}4\text{PV}\left(\int_{-\infty}^\infty \frac{e^{ip(x+1)}}{x+1}\,dx\right)\\\\ &+\frac{ie^{-p}}4\int_{-\infty}^\infty \frac{e^{ip(x-i)}}{x-i}\,dx\\\\ &-\frac{ie^{p}}4\int_{-\infty}^\infty \frac{e^{ip(x+i)}}{x+i}\,dx\tag1 \end{align}$$

The Cauchy Principal values of the first two integrals on the right-hand side of $(1)$ are identical and equal to the value of the integral $\displaystyle \int_{-\infty}^\infty \frac{\sin(px)}{x}\,dx=i\pi\text{sgn}(p)$. For $p>0$ ($p<0$), the Residue Theorem guarantees that the value of the fourth (third) integral in $(4)$ is $0$, while the value of the third (fourth) integral is $2\pi i$ ($-2\pi i$).

Putting it together, we find that

$$\text{PV}\left(\int_{-\infty}^\infty \frac{e^{ipx}}{x^4-1}\,dx\right)=-\frac\pi2 \left(\sin(|p|)+e^{-|p|}\right)$$

as expected!