Can we show the block matrix of the inverse of $A$ is greater than the inverse of the block matrix of $A$

block matricesinversematricesmatrix analysispositive definite

I know we have the relation $\left( A_{ii} \right) ^{-1}\le \left( A^{-1} \right) _{ii}$ where $A$ is a positive definite matrix. My problem is, can we extend the result to block matrices with $C\preceq D$ stands for $D-C$ is positive semi-definite? That is, $\left( A_{\left[ ii \right]} \right) ^{-1}\preceq \left( A^{-1} \right) _{\left[ ii \right]}$ with $[ii]$ stands for the $ii$th block?

For example, if $$A=\left( \begin{matrix}
A_{11}& A_{12}\\
A_{12}^{\dagger}& A_{22}\\
\end{matrix} \right) $$
with $A_{11},A_{12},A_{22}$ matrices instead of numbers, can I show that $$\left( A^{-1} \right)_{11}\succeq \left( A_{11} \right)^{-1}$$ where $\left( A^{-1} \right) _{11}$ is the upper left submatrix of $A^{-1}$?

Best Answer

If $A$ is symmetric and positive-definite, then the answer is yes.

It follows, e.g., straight from the matrix inversion Lemma (e.g., Matrix Analysis by Horn or this mathoverflow answer) or standard blockwise inverse results (as the one in Appendix).

Lemma. Let $A\in\mathbb{S}_{++}^N$ be an $N\times N$ positive-definite symmetric matrix. Let $S\subset \left\{1,2,\ldots,N\right\}$. Then,

$$\left[A^{-1}\right]_{S}\succeq \left(A_S\right)^{-1},$$

where $B_{S}$ or $\left[B\right]_S$ is the $\left|S\right|\times \left|S\right|$ submatrix formed with the elements of $B$ indexed by $S\times S$.

Proof.

From the inversion Lemma (or refer to the Appendix below), you have

$$\left(A_S\right)^{-1}=\left[A^{-1}\right]_S-\underbrace{\left[A^{-1}\right]_{SS'}\left(\left[A^{-1}\right]_{S'}\right)^{-1}\left[A^{-1}\right]_{S'S}}_{=:\mathcal{E}_S},$$

where $S'$ is the complement of $S$ and $\mathcal{E}_S$ may be interpreted as the error matrix that stems from commuting the projection $\left[\cdot\right]_{S}$ and the inversion $\left(\cdot\right)^{-1}$ operations.

Therefore, $\left[A^{-1}\right]_S \succeq \left(A_S\right)^{-1}$ if and only if $\mathcal{E}_S\succeq 0$.

It is straighforward to check that $\mathcal{E}_S\succeq 0$. Indeed, if $A\succ 0$, then $\left(\left[A^{-1}\right]_{S'}\right)^{-1}\succ 0$, as the positive-definiteness property is preserved under projection $\left[\cdot\right]_S$ and inversion $\left(\cdot\right)^{-1}$. Further, since $A$ is symmetric, then $\left[A^{-1}\right]_{SS'}$ is the transpose of $\left[A^{-1}\right]_{S'S}$.

----------------- Appendix: Blockwise inversion -------------------------

Since $A$ is invertible and symmetric, we can write it as $A=\left[\begin{array}{cc} \widetilde{A} & \widetilde{B}\\ \widetilde{B}^{\top} & \widetilde{D} \end{array}\right]^{-1}.$

From this inverse block matrix result in equation (2), -- that relates the sub-block $A_S$ with the Schur Complement of $A^{-1}$ -- we have

$$A_S=\left(\left[A^{-1}\right]_S-\left[A^{-1}\right]_{SS'}\left(\left[A^{-1}\right]_{S'}\right)^{-1}\left[A^{-1}\right]_{S'S}\right)^{-1},$$

since $\left[A^{-1}\right]_S=\widetilde{A}$; $\left[A^{-1}\right]_{S'}=\widetilde{D}$; $\left[A^{-1}\right]_{SS'}=\widetilde{B}$ and $\left[A^{-1}\right]_{SS'}=\widetilde{B}^{\top}$. Therefore,

$$\left(A_S\right)^{-1}=\left[A^{-1}\right]_S-\left[A^{-1}\right]_{SS'}\left(\left[A^{-1}\right]_{S'}\right)^{-1}\left[A^{-1}\right]_{S'S}.$$

Related Question