Can we show $\text E\left[X\mid\mathcal F_\sigma\right]=\text E\left[X\mid\mathcal F_{\sigma\:\wedge\:\tau}\right]$ on $\{\sigma\le\tau\}$

conditional-expectationmeasure-theoryprobability theorystopping-times

Let $I\subseteq\overline{\mathbb R}$, $(\mathcal F_t)_{t\in I}$ be a filtration on a probability space $(\Omega,\mathcal A,\operatorname P)$ and $\sigma,\tau:\Omega\to I\cup\{\sup I\}$ be $(\mathcal F_t)_{t\in I}$-stopping times. Moreover, let $\mathcal F_\tau$ denote the $\sigma$-algebra of the $\tau$-past, i.e. $$\mathcal F_\tau=\{A\in\mathcal A:A\cap\{\tau\le t\}\in\mathcal F_t\},$$ and $\left.\mathcal F\right|_A:=\{A\cap B:B\in\mathcal F\}$ denote the trace of a $\sigma$-algebra $\mathcal F$ on a set $A$.

Now, if $X$ is an integrable random variable on $(\Omega,\mathcal A,\operatorname P)$, are we able to show that $$\operatorname E\left[X\mid\mathcal F_\sigma\right]=\operatorname E\left[X\mid\mathcal F_{\sigma\:\wedge\:\tau}\right]\tag1$$ on $\{\sigma\le\tau\}$?

Since $$\left.\mathcal F_{\sigma}\right|_{\{\:\sigma\:\le\:\tau\:\}}=\left.\mathcal F_{\sigma\:\wedge\:\tau}\right|_{\{\:\sigma\:\le\:\tau\:\}}\tag1,$$ the desired claim would immediately follow from the the local property of conditional expectation if we could show that $\{\sigma\le\tau\}\in\mathcal F_\sigma$ and $\{\sigma\le\tau\}\in\mathcal F_{\sigma\:\wedge\:\tau}$.

Now $\mathcal F_{\sigma\:\wedge\:\tau}\subseteq\mathcal F_\sigma$. So, it is sufficient to show $\{\sigma\le\tau\}\in\mathcal F_{\sigma\:\wedge\:\tau}$. But is this really true?

Best Answer

Proof of $\{\sigma \leq \tau\} \in \mathcal F_{\sigma \wedge \tau}$:

We have to show that $\{\sigma \leq \tau\} \cap \{\sigma \wedge \tau \leq t\} \in \mathcal F_t$ for all $t$.

Write this as $$\{\tau >t, \sigma \leq t\} \cup \{\sigma \leq t, \tau \leq t, \sigma \leq \tau\} $$

(by considering the cases $\tau \leq t$ and $\tau >t$).

Now, $\{\sigma \leq t, \tau \leq t, \sigma \leq \tau\}=\{\sigma \leq t, \tau \leq t\} \setminus \{\sigma \leq t, \tau \leq t, \sigma > \tau\}$.

Finally, write $\{\sigma \leq t, \tau \leq t, \sigma > \tau\}$ as $$\bigcup_{r \in \mathbb Q, r <t} \{\sigma \leq t, \tau \leq t, \sigma > r>\tau\} \,.$$

Since $\{\sigma \leq t, \tau \leq t, \sigma > r>\tau\}$ is the intersection of $\{\sigma \leq t\}, \{\tau \leq t\}, \{\sigma > r\}$ and $\{\tau <r\}$ we are done. [The last event is the union over $n$ of $\tau \leq r-\frac 1 n$].

Related Question