Can $S_n=a_1a_2+a_2a_3+\cdots+a_na_1=0$ if $a_i=±1$ for $n=28$ and $n=30$

algebra-precalculussequences-and-series

Let $$S_n=a_1a_2+a_2a_3+\cdots+a_na_1$$
If $a_i=\pm 1$, can $S_{28}=S_{30}=0$?

My approach: Start from small $n$ if we can see a pattern

For $n=1$:

$S_1=a_1=±1 \neq0$

For $n=2$:

$S_2=a_1a_2+a_2a_1=2a_1a_2=±2 \neq0$

For $n=3$:

$S_3=a_1a_2+a_2a_3+a_3a_1$

Because $a_1a_2$, $a_2a_3$ and $a_3a_1$ are odd numbers and $0$ is an even number, $S_3$ cannot be $0$. (this can be applied to other $S_n$ if $n$ is an odd number)

For $n=4$:

$S_4=a_1a_2+a_2a_3+a_3a_4+a_4a_1=(a_1+a_3)(a_2+a_4)$

However, I can't do the same with $n=6$ and above…

Best Answer

Write $$S_{30}=S_{28} -a_{28}a_1+a_{28}a_{29}+a_{29}a_{30}+a_{30}a_{1}$$

If $S_{30}=0=S_{28}$,

$$0=-a_{28}a_1+a_{28}a_{29}+a_{29}a_{30}+a_{30}a_{1}$$

$$a_{28}(a_{1}-a_{29})=(a_{29}+a_{1})a_{30}$$

But one of $(a_{1}-a_{29})$, $(a_{29}+a_{1})$ is zero, while other is not.

Hence impossible.