Can Algebraic Limit Theorem apply to the function in exponential position

analysisexponential functionlimits

If I try to calculate this limit,
$$\lim_{x \to \infty} {\left( 1+\frac{1}{x} \right) ^ { x+1 }}$$
I go through these steps:
$$\lim_{x \to \infty} {\left( 1+\frac{1}{x} \right) ^ {{x} \cdot { \frac{x+1}{x} }}}$$

$$e^{\lim_{x \to \infty} {\frac{x+1}{x}}}$$

And I have a question about How the limit can be distributed. So, more precisely, what conditions are needed to make this possible?
$$\lim {f(x)}^{g(x)} = \left(\lim f(x) \right)^{\lim g(x)}$$
Is the only condition that $\lim f(x)$ and $\lim g(x)$ converge needed to make this possible, or are there any more conditions?

Best Answer

\begin{align*} \lim\limits_{x \to \infty} f(x)^{g(x)} &= \lim\limits_{x \to \infty} \exp\left(\log(f(x)^{g(x)})\right)\\ &= \lim\limits_{x \to \infty} \exp\left(g(x)\log(f(x))\right)\\ &= \exp\left(\lim\limits_{x \to \infty} g(x)\log(f(x))\right)\\ &= \exp\left(\lim\limits_{x \to \infty} g(x) \cdot \lim\limits_{x \to \infty} \log(f(x))\right)\\ &= \exp\left(\lim\limits_{x \to \infty} g(x) \cdot \log(\lim\limits_{x \to \infty} f(x))\right)\\ &= \ldots \\ &= \lim\limits_{x \to \infty} f(x)^{\lim\limits_{x \to \infty} g(x)}, \end{align*} so what you need is the existence of the limits and $\lim\limits_{x \to \infty} f(x) > 0$.

Related Question