Calculus of Variations (Gelfand & Fomin): Proof of Functional Dependence Identity

calculusvariational-analysis

I'm on page 40 of the book (Section 2.10 – Variational Problems in Parametric Form). It states that for

$\int_{t_0}^{t_1}F\left(x,y,\frac{\dot{y}}{\dot{x}}\right)\dot{x}dt=\int_{t_0}^{t_1}\Phi\left(x,y,\dot{x},\dot{y}\right)dt$

where the Euler equation for the left-hand side (LHS) is

$F_y-\frac{d}{dx}F_{y'}=0$

and the system of Euler equations for the right-hand side (RHS) are

$\Phi_x-\frac{d}{dt}\Phi_{\dot{x}}=0$

$\Phi_y-\frac{d}{dt}\Phi_{\dot{y}}=0$

that the system of Euler equations are dependent and related by

$\dot{x}\left(\Phi_x-\frac{d}{dt}\Phi_{\dot{x}}\right)+\dot{y}\left(\Phi_y-\frac{d}{dt}\Phi_{\dot{y}}\right)=0$.

Can someone prove this? I'm lost.

Thoughts

  1. David Widder's "Advanced Calculus" tells us that two functions are dependent if their Jacobian vanishes (i.e. is identically zero)

  2. Formulating the equation as

    $\frac{\dot{y}}{\dot{x}}=-\frac{\left(\Phi_x-\frac{d}{dt}\Phi_{\dot{x}}\right)}{\left(\Phi_y-\frac{d}{dt}\Phi_{\dot{y}}\right)}$

    looks eerily similar to implicit differentiation.

Best Answer

Calling

$$ \Phi(x,y,\dot x, \dot y)=F\left(x,y,\frac{\dot y }{\dot x}\right)\dot x $$

and performing

$$ \dot{x}\left(\Phi_x-\frac{d}{dt}\Phi_{\dot{x}}\right)+\dot{y}\left(\Phi_y-\frac{d}{dt}\Phi_{\dot{y}}\right) $$

we get after some algebra

$$ \dot x\left((\dot x-\dot x)F_x+(\dot y-\dot y)F_y\right) = 0 $$

NOTE

$$ \dot y \left(F^{(0,1,0)} \dot x-F^{(1,0,1)} \dot x+F^{(0,0,2)} \left(\frac{\ddot x \dot y}{\left(\dot x\right)^2}-\frac{\ddot y}{\dot x}\right)-F^{(0,1,1)} \dot y\right)+\dot x \left(\frac{F^{(0,0,1)} \ddot y}{\dot x}-\frac{F^{(0,0,1)} \ddot x \dot y}{\left(\dot x\right)^2}-F^{(0,0,1)} \left(\frac{\ddot y}{\dot x}-\frac{\ddot x \dot y}{\left(\dot x\right)^2}\right)+\frac{\dot y \left(F^{(1,0,1)} \dot x+F^{(0,0,2)} \left(\frac{\ddot y}{\dot x}-\frac{\ddot x \dot y}{\left(\dot x\right)^2}\right)+F^{(0,1,1)} \dot y\right)}{\dot x}-F^{(0,1,0)} \dot y\right) = 0 $$

NOTE

Considering

$$ I = \int_{x_1}^{x_2} F(x,y,y')dx $$

we have

$$ y' = \frac{dy}{dx}= \frac{\dot y}{\dot x}\to dx = \dot x dt $$

and then

$$ I = \int_{t_1}^{t_2}F\left(x,y,\frac{\dot y}{\dot x}\right)\dot x dt $$

then

$$ \Phi_x = F_x \dot x\\ \Phi_{\dot x} = F-\dot x F_{y'}\frac{\dot y}{(\dot x)^2} = F-y' F_{y'} $$

etc. Having in mind the identity for $g(x,y,y')$

$$ \frac{d}{dx}\left(y'g_{y'}-g\right) = y'\frac{d}{dx}g_{y'}-g_x-g_y y'=-y'\left(g_y-\frac{d}{dx}g_{y'}\right)-g_x $$

we have

$$ \frac{d}{dt}\Phi_{\dot x} = \dot x\frac{d}{dx}\left(F-y' F_{y'}\right) = \dot x\left\{y'\left(F_y-\frac{d}{dx}F_{y'}\right)+F_x\right\} $$

and also

$$ \Phi_x = F_x\dot x,\ \ \ \Phi_{\dot y} = \dot x F_{y'}\frac{1}{\dot x} = F_{y'} $$

So concluding with $\frac{d}{dt}\Phi_{\dot y} = \dot x\frac{d}{dx}F_{y'}$

$$ \Phi_x-\frac{d}{dt}\Phi_{\dot x} = -\dot y\left(F_y-\frac{d}{dx}F_{y'}\right)\\ \Phi_y-\frac{d}{dt}\Phi_{\dot y} = \dot x\left(F_y-\frac{d}{dx}F_{y'}\right) $$

Related Question