Calculating the volume of a solid

multiple integralmultivariable-calculusvolume

Determine the volume of the solid described by
$$x^2 + y^2 + 2z^2 \leq 1; \, x + 2y + 3z \geq 0.$$
I am pretty sure that I will need to be doing a triple integral here, but I'm not quite sure how to set up the integrals. I am mostly unsure about the bounds of integration of each variable. I have also tried converting to spherical coordinates but it didn't seem to be helpful.

I was able to discern that the region in question would be an ellipsoid intersected by a plane and was able to verify my idea with Mathematica.

This is the region in question.

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ Hereafter, $\ds{\bracks{\cdots}}$ is an $\ds{Iverson\ Bracket}$. \begin{align} V & \equiv \bbox[5px,#ffd]{\iiint_{\mathbb{R}^{3}} \bracks{x^{2} + y^{2} + 2z^{2} < 1}\bracks{x + 2y + 3z > 0} \dd x\,\dd y\,\dd z} \\[5mm] & = {\root{2} \over 2}\iiint_{\mathbb{R}^{3}} \bracks{x^{2} + y^{2} + z^{2} < 1} \bracks{x + 2y + {3\root{2} \over 2}\,z > 0}\dd x\,\dd y\,\dd z \\[5mm] & = \left.{\root{2} \over 2}\iiint_{r\ <\ 1} \bracks{\vec{r}\cdot\vec{n} > 0}\dd^{3}\vec{r} \,\right\vert_{\ \vec{\,\large n}\ \equiv\ \pars{1,2,3\root{2}/2}} \\[5mm] & = {\root{2} \over 2}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{1} \bracks{rn\cos\pars{\theta} > 0}r^{2}\sin\pars{\theta} \,\dd r\,\dd\theta\,\dd\phi \\[5mm] & = {\root{2} \over 2}\,2\pi\int_{0}^{\pi}\int_{0}^{1} \bracks{\cos\pars{\theta} > 0}r^{2}\sin\pars{\theta} \,\dd r\,\dd\theta \\[2mm] & = \root{2}\pi\int_{0}^{\pi} \bracks{0 < \theta < {\pi \over 2}}\sin\pars{\theta} \pars{1 \over 3}\,\dd\theta = {\root{2} \over 3}\pi\ \overbrace{\int_{0}^{\pi/2}\sin\pars{\theta}\,\dd\theta}^{\ds{= 1}} \\[5mm] & = \bbx{{\root{2} \over 3}\,\pi} \approx 1.4810\\ & \end{align}

Related Question