Calculating the limit of $x_{n+1}=\frac{x_n(x_n^2+3a)}{3x_n^2+a}$

calculuslimitssequences-and-series

Let $x_{n+1}=\dfrac{x_n(x_n^2+3a)}{3x_n^2+a}$, where $x_1>0,a>0$. I guess the limit of $\{x_n\}$ as $n\rightarrow\infty$ is $\sqrt{a}$.

I tried to use the monotone bounded convergence theorem. If we let $f(x)=\dfrac{x(x^2+3a)}{3x^2+a}$ ,$f'(x)\leq 0$.How to check that the sequence $\{x_n\}$ is monotone? How to show that $\lim_{n\rightarrow \infty}x_n=\sqrt{a}$?

Best Answer

First assume that $x_1\le \sqrt a$. Then $x_n\le \sqrt a$ for $n\ge 2$. In fact,
\begin{eqnarray} x_{n+1}-\sqrt a=\dfrac{x_n(x_n^2+3a)}{3x_n^2+a}-\sqrt a=\dfrac{(x_n-\sqrt a)^3}{3x_n^2+a} \le0 \end{eqnarray} by induction. Note $$ \frac{x_{n+1}}{x_n}-1=\dfrac{x_n^2+3a}{3x_n^2+a}-1=\frac{2(a-x_n^2)}{3x_n^2+a}\ge0$$ and hence $\{x_n\}$ is bounded and increasing. So $\{x_n\}$ converges. You can treat $x_1>\sqrt a$ similarly.