Calculating the Expected value of a function over a random vector

expected valueprobabilitystatistics

let $$(X_1, X_2, \dots, X_n)$$ be the order statistics of $n$ i.i.d. uniform random variables. that satisfies the following condition. $$0 < x_1 < x_2 < \dots < x_n < 1$$
now consider a continuous function $f : [0,1] \rightarrow \mathbb{R}$ we define the random variable $R$ to be:
$$
R = \sum_{i = 0}^{n – 1}f(X_{i+1}) \times (X_{i+1} – X_i) \hspace{0.5cm}X_0 = 0
$$

I need to prove the expected value of R equals:
$$
E[R] = \int_{0}^{1}f(t)(1-(1-t)^n)dt
$$

What I've tried so far is that I tried to find the pdf of each $X_i$ using the following formula:
$$
f_{X_k}(x_k) = \frac{n!}{(k-1)!(n-k)!}F_X^{k-1}(x)[1-F_X(x)]^{n-k}f_X(x)
$$

where $f_{X}$ is the pdf of our Uniform random variable(not to be mistaken with the f function described above) and F is the CDF of the aforementioned random variable. Using the said pdf and CDF and the linearity of expected value seems to get me nowhere, and I'm stuck.

Best Answer

Note that for $0\le i\le n-1$, $$ \mathsf{E}f(X_{i+1})(X_{i+1}-X_i)=\frac{1}{1+i}\mathsf{E}f(X_{i+1})X_{i+1} $$ Thus, \begin{align} \mathsf{E}R&= \sum_{i=0}^{n-1}\frac{1}{1+i}\mathsf{E}f(X_{i+1})X_{i+1} \\ &= \sum_{i=0}^{n-1}\frac{1}{1+i}\int_0^1 f(x)xf_{X_{i+1}}(x)\, dx \\ &=\int_0^1 f(x)\sum_{i=1}^n\binom{n}{i}x^{i}(1-x)^{n-i}\, dx \\ &=\int_0^1 f(x)(1-(1-x)^n)\, dx \end{align} because $\sum_{i=0}^n\binom{n}{i}x^{i}(1-x)^{n-i}=1$.


One can show the first equality by noticing that $(X_i,X_{i+1})\overset{d}{=}\big(U_{i}^{1/i}\cdots U_n^{1/n},U_{i+1}^{1/(i+1)}\cdots U_n^{1/n}\big)$, $1\le i\le n-1$, where $U_1,\ldots,U_n$ are i.i.d. $U[0,1]$ random variables and computing the expectation. That is, letting $Z\equiv U_{i+1}^{1/(i+1)}\cdots U_n^{1/n}$, \begin{align} \mathsf{E}f(X_{i+1})(X_{i+1}-X_i)&=\mathsf{E}f(Z)Z\big(1-U_i^{1/i}\big) \\ &=\mathsf{E}[f(Z)Z]\times \mathsf{E}\big[1-U_i^{1/i}\big] \\ &=\mathsf{E}[f(Z)Z]\times \frac{1}{1+i}. \end{align}

Related Question