Calculating surface integral with sphere

surface-integrals

I need to calculate the following surface integral:$\iint x^2dydz+y^2dxdz+z^2dxdy$ on the region $S:(x-a)^2+(y-b)^2+(z-c)^2=R^2$ in the direction of outside normal.
So, first i found that normal has coordinates $(\frac{x-a}{R},\frac{y-b}{R},\frac{z-c}{R})$.(I am not sure should I use $+$ or $-$ outside the bracket.) Then, I am calculating $<(x^2,y^2,z^2),(\frac{x-a}{R},\frac{y-b}{R},\frac{z-c}{R})>$ and get $\frac{x^2(x-a)+y^2(y-b)+z^2(z-c)}{R}$. Using spherical coordinates $x=a+R\cos\phi\sin\theta, y=b+R\sin\phi\sin\theta, z=c+R\cos\theta$ I am proceeding with calculating this integral with bounds $0\le\phi\le2\pi, 0\le\theta\le\pi$. Is this correct?
So, my only doubts is should I use + or -, and is the following at attempt correct?

Best Answer

Alternatively apply divergence theorem.

$\displaystyle \iint_S x^2dydz+y^2dxdz+z^2dxdy = \iiint_V (div \vec{F}) \ dV$

$\vec{F} = (x^2,y^2,z^2)$

$div(\vec{F}) = \nabla \cdot \vec{F} = 2(x+y+z)$

Please use $x = a + \rho \cos \theta \sin\phi, y = b + \rho \sin\theta \sin\phi, z = c + \rho \cos\phi$ for the integral.

Related Question