Calculating $\int_0^1\frac{\ln^2x\ln(1-x)}{1-x}dx$ without using Beta function and Euler sum.

alternative-proofcomplex-analysisintegrationlogarithmsreal-analysis

Is it possible to show that

$$\int_0^1\frac{\ln^2x\ln(1-x)}{1-x}dx=-\frac12\zeta(4)$$

without using the Beta function

$$\text{B}(a,b)=\int_0^1 x^{a-1}(1-x)^{b-1}dx=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
and the generalized Euler sum

$$\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k),\quad q\ge 2\ ?$$

By integration by parts I found

$$\int_0^1\frac{\ln^2x\ln(1-x)}{1-x}dx=\color{blue}{\int_0^1\frac{\ln^2(1-x)\ln x}{x}dx}$$

Setting $1-x\to x$ gives the blue integral again.

This integral seems tough under such restrictions. All approaches are welcome.

thanks.

Best Answer

Feynman trick works fine here:

Let

$$I=\int_0^1\frac{\ln^2x\ln(1-x)}{1-x}dx$$

$$I(a)=\int_0^1\frac{\ln^2x\ln(1-ax)}{1-x}dx,\quad I(1)=I,\quad I(0)=0$$

$$\Longrightarrow I'(a)=-\int_0^1\frac{x\ln^2x}{(1-x)(1-ax)}dx=2\frac{\text{Li}_3(a)}{a}+2\frac{\text{Li}_3(a)-\zeta(3)}{1-a}$$

$$\therefore I= 2\int_0^1\frac{\text{Li}_3(a)}{a}da+2\underbrace{\int_0^1\frac{\text{Li}_3(a)-\zeta(3)}{1-a}da}_{IBP}$$

$$=2\zeta(4)+2\int_0^1\frac{\ln(1-a)\text{Li}_2(a)}{a}da$$

$$=2\zeta(4)-\text{Li}_2^2(1)$$

$$=2\zeta(4)-\frac{5}{2}\zeta(4)=-\frac12\zeta(4)$$


Bonus:

I noticed that this trick works for only even powers of $\ln x$ and by following the same technique we find the generalization:

$$\int_0^1\frac{\ln^qx\ln(1-x)}{1-x}dx=-q!\zeta(q+2)-\frac{q!}{2}\sum_{n=1}^{q-1}(-1)^n\zeta(q-n+1)\zeta(n+1)$$

Some cases:

$$\int_0^1\frac{\ln^4x\ln(1-x)}{1-x}dx=12\zeta^2(3)-18\zeta(6)$$

$$\int_0^1\frac{\ln^6x\ln(1-x)}{1-x}dx=720\zeta(3)\zeta(5)-900\zeta(8)$$

For the case of odd powers of $\ln x$, we will need to use Euler sum or Beta function.

Related Question