Calculate the integral $\int\limits_{0}^{\infty }\frac{x^{s}}{\sqrt{x^2+1}}dx$

calculusreal-analysis

There is a beautiful identity, which I proved (I will not give the proof, because it is not about the identity)
$$\int\limits_{0}^{\infty }x^{s-1}f(x)dx=\Gamma (s)\int\limits_{0}^{\infty }\frac{1}{x^s}\mathcal{L}^{-1}\left \{ f(t) \right \}(x)dx$$
This identity shows a direct connection between the Mellin transform and the inverse Laplace transform

With this identity you can solve integrals quite easily. Yes, if you noticed, the Bessel function plays an important role here!

Calculate the integral
$$\int\limits_{0}^{\infty }\frac{x^{s}}{\sqrt{x^2+1}}dx$$

Here is my attempt to calculate this integral using this identit:

$$\int\limits_{0}^{\infty }\frac{x^{s}}{\sqrt{x^2+1}}dx=\int\limits_{0}^{\infty }\frac{J_0(x)}{x^{-2s+1}}dx=\frac{\pi^{1/2}}{2\sin \pi s}\frac{\Gamma (s+1/2)}{\Gamma (s+1)}=\frac{\pi^{1/2}}{4s\sin \pi s}\Gamma \left ( s-\frac{1}{2} \right )$$

Did I apply this identity correctly? Did I calculate this integral correctly?

Best Answer

I believe the correct derivation is as follows:

$$\mathcal{M}_x\left[\frac{1}{\sqrt{x^2+1}}\right](s+1)=\int\limits_0^{\infty} \frac{x^s}{\sqrt{x^2+1}}\,dx$$ $$=\Gamma(s+1) \int\limits_0^{\infty} x^{-s-1} \left(\mathcal{L}_t^{-1}\left[\frac{1}{\sqrt{t^2+1}}\right](x)\right)\,dx$$ $$=\Gamma(s+1) \int\limits_0^{\infty} x^{-s-1}\, J_0(x)\,dx=\frac{\Gamma\left(-\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{2 \sqrt{\pi}},\quad -1<\Re(s)<0$$