Calculate the integral by Riemann $\int_{0}^{1}\sqrt{x}\,dx$

definite integralsintegrationriemann-integration

Calculate the integral by Riemann $\displaystyle \int _{0}^{1}\sqrt{x} \, dx$

$$\displaystyle a_{k} =0+k\cdot \frac{1}{n} =\frac{k}{n}$$

$$\displaystyle \Delta x=\frac{1-0}{n} =\frac{1}{n}$$

\begin{align*}
\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\left(\sqrt{\frac{k}{n}}\right) \cdotp \frac{1}{n} & = \lim_{n\rightarrow \infty }\sum_{k=1}^{n}\left(\frac{\sqrt{k}}{\sqrt{n}}\right) \cdotp \frac{1}{n} \\[1ex]
& = \lim_{n\rightarrow \infty }\sum_{k=1}^{n}\left(\frac{1}{n\sqrt{n}} \cdotp \sqrt{k}\right) \\[1ex]
& = \lim_{n\rightarrow \infty }\frac{1}{n \sqrt{n}} \cdotp \sum_{k=1}^{n}\left(\sqrt{k}\right)
\end{align*}

I am stuck on the sum of $\sqrt k$ maybe have another way to solve this question?

Best Answer

As suggested in the linked question and other answers posted here, you need not use equally-spaced subintervals in the partition of $[0,1]$. Instead, consider the sequence of intervals

$$\left\{\left[\left(\frac{i-1}n\right)^2, \left(\frac in\right)^2\right] \,\bigg| \, 1 \le i \le n \right\}_{n\in\Bbb N}$$

each with length $\frac{i^2}{n^2} - \frac{(i-1)^2}{n^2} = \frac{2i - 1}{n^2}$.

enter image description here

Then the (right-endpoint) Riemann sum is

$$\sum_{i=1}^n \sqrt{\left(\frac in\right)^2} \frac{2i-1}{n^2} = \sum_{i=1}^n \frac{2i^2-i}{n^3} = \frac{(n+1)(4n-1)}{6n^2}$$

As $n\to\infty$, the sum converges to the definite integral, and we have

$$\int_0^1 \sqrt x \, dx = \lim_{n\to\infty} \frac{(n+1)(4n-1)}{6n^2} = \frac23$$

which agrees with the known antiderivative result,

$$\int_0^1 x^{\frac12} \, dx = \frac23 x^{\frac32}\bigg|_0^1 = \frac23$$